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ABSTRACT In the past few decades, there have been multiple algorithms proposed for the purpose of
solving optimization problems including Machine Learning (ML) applications. Among these algorithms,
metaheuristics are an appropriate tool to solve these real problems. Also, ML is one of the advanced
tools in Artificial Intelligence (AI) including different learning strategies to teach new tasks according to
data. Therefore, proposing an efficient meta-heuristic to improve the inputs of the trainer in ML would be
significant. In this study, a new idea centered on seed growth, SeedGrowthAlgorithm (SGA), as a conditional
convergent evolutionary algorithm is proposed for optimizing several discrete and continuous optimization
problems. SGA is used in the process of solving optimization test problems by neural networks. The problems
are solved by the same neural network with and without SGA, computational results prove the efficiency
of SGA in neural networks. Finally, SGA is proposed to solve very extensive test problems including IoT
optimization problems. Comparative results of applying the SGA on all of these problems with different
sizes are included, and the proposed algorithm suggests effective solutions within a reasonable timeframe.

INDEX TERMS Meta-heuristic approaches, seed growth algorithm, machine learning, neural networks.

I. INTRODUCTION
Recently, a lot of Meta-heuristic algorithms have been
proposed by optimization scientists. Almost all of these
algorithms are based on the behavior of animals and
life natural systems [1], [2], [3], [4]. Only a handful of
algorithms have been developed using natural phenomena or
scientific theories [5], [6], [7], [8]. Among them are some
popular ones such as Particle Swarm Optimization (PSO)
[1], Artificial Bee Colony Algorithm [2], and Social Spider
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Optimization [3], Laying Chicken Algorithm (LCA) [4], Big
Bang Algorithm (BBA) [5], Volcano Eruption Algorithm
(VEA) [6], COVID-19 Optimizer Algorithm (CVA) [7], and
Multiverse Algorithm (MVA) [8].
Machine learning is one of the progressive methods in

artificial intelligence in which different learning strategies
are used to teach new tasks according to data [9]. One of
the important applications of machine learning is to use
historical data as input and to accurately predict results
without explicit planning. In addition, according to the nature
of different machine learning algorithms, this method can be
a computational approach to learning [10]. Considering that
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different machine learning algorithms have different param-
eters, the use of optimization methods in these algorithms is
very common. The purpose of using different optimization
methods in machine learning is to minimize the cost function
determined by the model parameters. In this method, com-
monly known as gradient descent, the objective is tominimize
a convex function using frequent iterations and updates
of network parameters [11]. After optimizing the network
parameters, these models are ready to be used in different
environments. In the gradient-based optimization methods,
which are utilized for the purpose of training machine
learning models, the parameters of machine learning models
are optimized by minimizing the error between the actual and
the expected results [12]. Actually, neural networks, which
are the basis of many machine learning methods, are trained
using the backpropagation algorithm [13]. Using this method,
the weights of the neural network are adjusted based on the
amount of error obtained in the previous iteration. Backprop-
agation is the process of calculating the derivatives of the
weights, and gradient descent is the process of descending
through the gradient, i.e. adjusting the model parameters to
descend through the loss function. Since the performance of
the backpropagation algorithm relies heavily on the training
data, the biggest problem is the relative sensitivity of this
algorithm to noisy and irregular data. In addition, it needs a lot
of time to train the machine learning model. Another major
disadvantage of the backpropagation method is getting stuck
in local minima which is computationally expensive. On the
other hand, gradient-based methods have many limitations
too. Commonly their quality is very dependent on the step
size. If the step size is too large, we may never converge
to a local minimum because we pass through it every time.
And if the step size is small, it may converge after a long
time [14]. Another important drawback of gradient-based
methods is the extraction ofmultiple locally optimal solutions
in problems that even have a global optimization solution.
Also, the high computational complexity due to frequent
updates and the use of all resources to process a training
sample at any time are the other risks of these optimization
methods too [15].

Over the past few years, there has been a growing trend
in research towards incorporating meta-heuristic techniques
for optimizing machine learning algorithm parameters. The
purpose of this integration was to solve the problems of
the existing optimization methods based on the gradient
in optimizing the parameters of neural networks and to
avoid the complex process of backpropagation. In addition,
there has been much research in the field of using machine
learning in meta-heuristic methods to solve optimization
problems. By employing these techniques, the performance
of meta-heuristic methods can be enhanced in terms of
solution quality, convergence rate, and robustness, leading
to more efficient and effective searches. Many of these
meta-heuristic methods based on machine learning have
produced high-quality and robust results so far and represent
advanced optimization algorithms.

Very recently there are some attempts to optimize the
outcome of machine learning methods by optimization
algorithms which the following works are significant among
others. A new non-convex and parameter-free surrogate has
been proposed which converges and optimizes by closed-
form solutions [16]. A method optimizes Two-way Partial
Area Under the ROC Curve (TPAUC) taking into account
the challenges associated with conducting gradient-based
optimization during end-to-end stochastic training [17].
Also, a novel manifold neural network based on non-
gradient optimization, with considering that the activation
function is generally invertible has been proposed [18].
Finally, a Riemannian meta-optimization method and a
framework have been presented to automatically learn a
Riemannian optimizer and to optimize the graph structure
respectively [19], [20].
Introduces the Honey Badger Algorithm (HBA), a novel

metaheuristic optimization method inspired by the intelligent
foraging behavior of honey badgers, was introduced offering
an efficient approach to solving optimization problems [21].
Orchard Algorithm (OA), drawing inspiration from fruit
gardening practices was introduced in [22]. OA employs
actions like irrigation, fertilization, trimming, and grafting
to cultivate fruitful optimization solutions. Gannet Opti-
mization Algorithm (GOA) has been presented as nature-
inspiredmetaheuristic [23]. GOA leverages gannets’ foraging
behaviors, including U-shaped and V-shaped diving patterns,
for effective exploration and exploitation within the search
space. [24]applies the Shrimp and Goby Association Search
Algorithm (SGASA) to tackle large-scale global optimization
problems, evaluating its performance across a range of
benchmarks and real-world engineering applications. The
Sine Cosine Algorithm (SCA) employs random candidate
solutions, guided by sine and cosine functions, emphasizing
exploration and exploitation throughout the optimization
process. [25]. Harris Hawks Optimizer (HHO), drawing
inspiration from the surprise pounce cooperative behavior
of Harris’ hawks in nature. [26]. [27] introduces the
groundbreaking Monarch Butterfly Optimization (MBO),
a novel nature-inspired metaheuristic algorithm.

A bidirectional LSTM networks employed to predict
annual peak loads [28]. A novel deep learning model for
short-term load forecasting in P2P energy trading has been
proposed in [29]. An incentive-based DR program using
modified deep learning and reinforcement learning was
proposed [30]. [31] introduces the Multi-Objectives Renew-
able Energy-Generation (MORE-G) model for wind-based
electricity generation. Very recently a new Deep Learning
intrusion detection system has been proposed for IoT
devices, featuring a four-layer Fully Connected network to
identify malicious traffic [32]. This paper introduces a novel
deep learning-based forecasting model for microgrid (MG)
operation was proposed recently by [33] with addressing
uncertainties in RESs, load, and day-ahead prices. Refer-
ence [34] introduces SConvLSTM, a gait recognition model
using wearable sensors. It autonomously extracts features
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FIGURE 1. Behavior of SGA in 2D and 3D for a given optimization problem with a global optimal.

from raw sensor data, eliminating the need for manual feature
design. An integrative machine learning model was presented
to predict residential building energy parameters: annual
thermal energy demand (DThE) and annual weighted average
discomfort degree-hours (HDD) [35].

In this paper, we present a novel optimization technique for
mathematical problems that exist in various continuous states.
Our approach is based on the Seed Growth Algorithm (SGA),
which we developed by simulating a natural event model.
Seed priming of crop seeds has been suggested by numerous
recent studies as a potentially beneficial method for improv-
ing germination, seedling growth, establishment, and yield.
Priming for enhanced resistance to abiotic stress is operating
via various pathways involved in different metabolic pro-
cesses. The seedlings emerging from primed seeds showed
early and uniform germination. Moreover, the overall growth
of plants is enhanced due to the seed-priming treatments.
The Germination stage is essential for the life cycle of all
plants. Typically, the germination requirements of a species
are considered adaptations to the specific environments
where they grow. Due to adaptive radiation into variable
and discontinuous habitats, each plant species has unique
seed Germination requirements. Germination proportion and
rate increased with seed storage length and were increased
by short and decreased by long dry periods occurring after
imbibition. Vitamins C and E and β -carotene were barely
detectable in the dry grains. However, upon germination,
the concentrations of these antioxidant vitamins steadily
increased with increasing germination time [36], [37].

We introduce the SGA concept and explain how we
adapted it from the natural simulation system to the
optimization algorithm. Our experiments demonstrate that

the proposed SGA successfully achieves the desired results
on a range of test problems. Also, wewill examine the various
opportunities for using SGA in DL. Our goal is to motivate
researchers to find the optimal values of DL parameters by
meta-heuristic methods.

Neural networks have undeniably become indispensable
tools for addressing real-world challenges, thanks to their
remarkable ability to navigate intricate, non-linear data.
Nevertheless, as the complexity and dimensionality of
problems grow, neural networks encounter difficulties in
consistently delivering optimal solutions. Simultaneously,
the promise of meta-heuristic algorithms in optimizing
intricate problems is evident. However, these algorithms often
bring substantial computational demands, especially in the
case of high-dimensional data. The motivation behind this
research stems from the fusion of these two formidable
approaches, seamlessly integrating meta-heuristic algorithms
within neural network frameworks. This integration endeav-
ors to empower neural networks to more efficiently tackle
real-world, non-linear challenges, potentially revolutionizing
diverse domains.

The significance of this paper lies in its proposition of
a convergent meta-heuristic approach, known as the Seed
Growth Algorithm (SGA), poised to enhance optimization
processes. SGA’s importance extends to its potential to
revolutionize the landscape of neural network training and
its application in a broad spectrum of problem domains.
The algorithm’s efficiency is underscored by empirical
comparisons with competitive meta-heuristics for benchmark
continuous optimization. SGA’s design leverages effective
strategies for exploration and exploitation, enabling it to
navigate the search space adeptly. In fact, this research aims
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to bridge the gap by introducing an innovative and efficient
meta-heuristic approach, poised to elevate the capabilities of
neural networks and optimize complex real-world problems
across various fields.

The main contributions of this paper are as follows:
1) The paper unveils SGA, a novel seed-inspired opti-

mization method with wide applicability, redefining
problem-solving paradigms.

2) It introduces a game-changing metaheuristic for neural
network training, significantly improving performance
across diverse domains.

3) SGA proves to be an efficient meta-heuristic, excelling
in benchmark optimization problems with its unique
exploration-exploitation approach.

4) SGA’s convergence is noteworthy since the conver-
gence of meta-heuristics is typically not guaranteed.

5) Simple and deep neural networks are evaluated both
with and without the SGA technique. The compu-
tational results robustly demonstrate the remarkable
efficiency of SGA in optimizing neural networks.
Furthermore, SGA’s versatility shines through in its
proficient adaptation to a wide range of optimization
problem domains, encompassing vehicular networks
such as Software Defined Internet of Vehicles (SDIoV),
Vehicular Ad hoc Networks (VANETs), and IoT traffic
management within Smart Sustainable Connected
Vehicles (Smart-SCV).

II. THE SEED GROWTH ALGORITHM (SGA) CONCEPT
This section serves as an introduction to the fundamental con-
cepts of the SGA and its connection to the natural phenomena
that inspired its development. The process of simulating
natural system of seed within the proposed optimization
algorithm includes three key stages: initialization, getting to
the ground, and the emergence of roots and stems.

In the first stage, much like a solitary seed in nature, the
algorithm commences with an initial solution. Just as a seed
instinctively seeks a path upwards, the initial solution strives
to progress toward a superior solution.

In the second stage, analogous to the way a seed matures
and continues to grow in nature, the SGA builds upon the
improved solution from the previous stage, progressing as far
as the feasible region allows.

The third stage mimics the behavior of a seed generating
roots and stems. Here, the SGA generates a set of solutions
and a population, with a focus on the vicinity of the best
solution obtained in the previous stage. Numerous solutions
are created, and from this pool, the algorithm identifies
the optimal solution once more. This three-stage process
emulates the growth and evolution of natural phenomena to
achieve optimized solutions.

A. THE INITIAL SOLUTION AND THE BETTER SOLUTION
The proposed method is based on this main concept of
population growth, same as seeds; each solution produces two
other solutions (root and stem). In this stage, each seed tries

to find a direction with solutions better than that solution.
Each solution moves to a better solution to achieve the soil;
this is because agents are intelligent here, unlike the natural
behavior of seeds. The algorithm searches from the initial
solution, x0, to a better solution such as xj according to
Equation 1 where the α is an arbitrary positive number, and
dj is an arbitrary direction:

xi = x0 + αdj (1)

Algorithm 1 Pseudo-Code of Initial Solution and the Better
Solution
1: Generate initial solution x0 randomly
2: Let a constant number α

3: while 1 > 0 do
4: Create a random direction d
5: xj = x0 + αd
6: if f (xj) is better than f (x0) then
7: Break for loop
8: end if
9: j = j+ 1

10: end while

B. GETTING TO THE GROUND
From the better solution in the previous stage, the movement
of the initial solution will be continued until the feasible
region allows. The solution moves according to Equation 2
where ϵ is a minimal positive number and di is the last
direction in the previous stage:

xi+1 = xi + ϵdi (2)

Algorithm 1 presents the pseudo-code for this stage, while
Algorithm 2 outlines the movement to the soil in greater
detail.

Algorithm 2 Pseudo-Code of Movement to the Ground
1: Let positive given number ϵ

2: d = di
3: n = ϵ

4: while xi+1 is in feasible space do
5: xi+1 = xi + kd
6: n = n+ ϵ

7: end while

C. CREATION ROOTS AND STEMS
In this stage of the SGA algorithm, a set of solutions is
created as roots and stems. Near to the best solution from the
previous stage, a number of roots and stems will be created
and then among these solutions the best solution is found
again. Finally, Equations 3 or 4 will generate a population
of solutions that are highly proximate to the best solution at
this stage:

||X − Y || ≤ k (3)
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FIGURE 2. Benchmarks optimization problems.

or √
(x1 − y1)2 + (x2 − y2)2 + . . .+ (xn − yn)2 ≤ k (4)

The n-dimensional vector Y and a small positive constant
k are defined, with X representing the best solution.
A population of seeds has been randomly created within the
closest possible neighborhood of the best solution. The best
solution of the population will be found according to the
objective function; then, the SGA algorithm goes back to the
first stage by the best solution.

D. STEPS OF THE SGA
In Figure 1, we illustrate the steps of SGA for optimizing
two different problems, in two and three dimensions. Where
the global optimal solution will be surrounded by the
generated random solutions in four iterations. We represent
the optimal solutions with prominent red points in the
two-dimensional case (Figure 1 (a-c)) and big blue points
in the three-dimensional case (Figure 1 (d-f)). The algorithm
initiates with an initial solution and then proceeds to search
for an improved solution. The best solution within the current
population are denoted by green points. Then the algorithm
commences from the best solution within the population and
continues to enhance the solution further.

Here are the proposed main steps of the Seed Growth
Algorithm (SGA) in the two-dimensional space R2 :
1) An initial feasible solution (x0, y0) is randomly gener-

ated within the feasible region. The following values

are also given: N for the number of solutions, ϵ and
ϵ1 as two arbitrary small positive numbers, and M1 as
the number of iterations.

2) Initial solution finds a better solution using
xi = x0 + αdj.

3) Solution i in step 2 is changed in direction of the last
vector while the solution is feasible according to xi+1 =
xi + ϵdi. The better solution between xi+1, xi will be
selected.

4) By the best solution from step 3, a set of roots and stems
are created, and the best will be updated again.

5) The initial population is generated near the best
solution, and the best solution for the population is
found.

6) Let (x0, y0) = (xbest , ybest ) go back to step 2.
7) If f (x(i+1)best ′′) − f (xibest ′′ ) < ϵ1, or the number of

iteration is more thanM1 the algorithmwill terminate at
this point, xibest , x(i+1)best are the best solutions in two
consecutive generations.

In our experimental setup, the algorithm’s parameters are
defined as follows:

1) M1 (Maximum Number of Iterations): M1 controls
the maximum number of allowed iterations, and we
empirically set it to 20.

2) N (Number of Solutions): The number of solutions,
N, varies based on the problem. For small examples,
it’s set to 1; for larger cases, it’s set to 50.

3) ϵ1 (Termination Threshold): We determined ϵ1 as
0.0001, and the algorithm stops when the improvement
falls below this threshold.
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4) x0 (Initial Solution): x0 is randomly generated and
serves as the algorithm’s starting point.

5) α (Arbitrary Positive Number): α is used to generate
the initial population from the initial solution.We deter-
mine α through experimentation, typically within the
range (0, 2]. A smaller α enhances accuracy but reduces
speed, while a larger α improves exploration and speed
at the cost of accuracy.

6) ϵ (Control Parameter for Feasible Region): To keep
the Stochastic Genetic Algorithm within the feasible
region, we set ϵ. Its value is empirically determined,
and for our experiments, we used 0.1. Choosing a large
ϵ can lead to infeasible solutions, so its value depends
on the problem’s constraints.

7) k (Control Parameter for Seed Population): A
positive constant, k ensures that the seed population is
randomly created close to the best solution. We empir-
ically set k to 1. A smaller k focuses on the best
solution but may lead to local optima, while a larger
k enhances exploration but might miss better solutions
nearby.

8) dj (Arbitrary Direction): dj represents an arbitrary
direction used within the algorithm.

These parameter values are selected based on a combination
of theoretical considerations and empirical testing, with the
aim of optimizing the algorithm’s performance for various
problem scenarios.

E. PSEUDOCODE AND FLOWCHART OF THE SGA
1) PSEUDOCODE

Algorithm 3 Seed Growth Algorithm (SGA) in R2

1: Initial feasible solution (x0, y0), number of solutions
N , small positive numbers ϵ, ϵ1, and maximum
iterationsM1

2: Randomly generate an initial feasible solution (x0, y0)
within the feasible region

3: Initialize iteration counter k ← 0
4: while k < M1 do
5: for i = 1 to N

Generate a new solution xi using xi← x0+αdj Adjust
the solution in the direction of the last vector: xi+1←
xi+ ϵdi Select the better solution between xi+1 and xi
end for

6: Create a set of roots and stems based on the best
solution from step 7
Update the best solution
Generate an initial population near the best solution
and find the best solution for the population
Update (x0, y0)← (xbest , ybest )

7: If|f (x(i+1)best ′′ ) − f (xibest ′′ )| < ϵ1 or k ≥ M1 the best
solution found (xbest , ybest ) Increment k by 1

8: end while

2) FLOWCHART
To visually represent the flow of the Seed Growth Algorithm
(SGA), the following steps can be translated into a flowchart:

Start

?
Initialize (x0, y0), N , ϵ, ϵ1, M1

?
Randomly generate (x0, y0)

?

Initialize k ← 0

?

k < M1

?

For i = 1 to N

?
Generate xi using xi← x0 + αdj

?
Adjust xi+1← xi + ϵdi

?
Select the better solution between xi+1 and xi

?

Create set of roots and stems based on the best solution

?
Update the best solution

?
Generate IS near the BS and find the BS for the population

?
Update (x0, y0)← (xbest , ybest )

?
If |f (x(i+1)best ′′ )− f (xibest ′′ )| < ϵ1 or k ≥ M1

?
Increment k by 1

?
Stop
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III. COMPUTATIONAL RESULTS
To demonstrate the feasibility and efficiency of the
SGA algorithm, two types of optimization problems were
tackled and solved: a) small-sized continuous problems
(Examples 1-9), and b) larger benchmark practical problems
(Functions 1-10). Consider the following three examples:

Example 1:

min−(x1 − 4)2 − (x2 − 4)2

s.t x1 ≤ 3

− x1 + x2 ≤ 2

x1 + x2 ≤ 4

x1, x2 ≥ 0 (5)

Example 2

min x21 + x
2
2

s.t − x1 − x2 ≤ −4

x1, x2 ≥ 0 (6)

Example 3

max exp(−(x1 − 4)2 − (x2 − 4)2)+ exp(−(x1 + 4)2

− (x2 − 4)2)

+ 2 ∗ exp(−x21 − x
2
2 )+ 2 ∗ exp(−x21 − (x2 + 4)2) (7)

Table 1 shows optimization test functions and Figure 2
shows their plots. Figures 3, 4 shows the process of SGA for
benchmarks. Behavior of the algorithm on contours has been
shown in Figures 5, 6.
Table 2 shows the results of the proposed algorithm for

Examples 1-3.
In this section, we aim to comprehensively evaluate

the efficacy of our proposed SGA. To provide a robust
assessment, we have conducted a detailed comparative
analysis by scrutinizing various statistical metrics, such as the
average fitness value and standard deviation. Additionally, for
a more intuitive understanding, we have performed a head-to-
head comparison include recently proposed algorithms such
as SGASA and GOA, as well as classical algorithms such as
PSO and SCA.

It is essential to highlight the parameters used in our
experimental setup, which consisted of 50 agents, amaximum
iteration limit of 20, and an epsilon value of 0.1. This
experiment was repeated 30 times to ensure the reliability and
consistency of the results. The findings, as summarized in
Tables 3, 4, 5, offer compelling evidence of the algorithm’s
competence and efficiency in addressing 10 functions of
CEC 2013 benchmark functions involving different problem
dimensions, namely 30, 50, and 100 dimensions.

The results provided in Tables 3, 4, 5 encompass crucial
statistical measures, including average values (Ave.) and
their corresponding standard deviations (Std.), which are
vital for gauging the algorithm’s performance across different
runs. Remarkably, in the majority of instances, our proposed
algorithm exhibits superior efficiency when compared to

its counterparts. These results not only underscore the
algorithm’s effectiveness but also affirm its potential as a
promising solution for optimization challenges.

The noteworthy aspect of the SGA results lies in the low
standard deviation, signifying a pronounced concentration
of data points around the mean of the dataset. This
observation suggests that the algorithm consistently produces
results that are closely clustered around the central average,
demonstrating its remarkable stability and reliability. In other
words, the small standard deviation is a testament to the
algorithm’s precision and its ability to yield dependable and
predictable outcomes.

In addition to evaluating the performance of the algorithms
based on their mean and standard deviation, we have
considered the Number of Function Evaluations (NFE) as a
critical metric for comparison. For each algorithm, the NFE
was calculated and included in the analysis to provide a
clearer picture of their efficiency and effectiveness.

A. STATISTICAL ANALYSIS FOR SGA AND COMPETING
ALGORITHMS
To strengthen our analysis and provide a robust comparison of
the performance of SGA against other competing algorithms,
we have incorporated several statistical tests. These tests
include the Friedman test, the sign test, and the Wilcoxon
signed-rank test. The results from these tests validate the
effectiveness and competitive edge of SGA. Friedman Test:

Friedman Test compares more than two related samples
to determine if they come from the same distribution,
using rank data for repeated measures or matched data.
The Friedman test ranks the performance of each algorithm
across multiple benchmark functions. The results indicated
significant differences in performance among the algorithms,
with a test statistic of 18.55 and a p-value of 0.00033. This
suggests that there are meaningful performance differences
across the algorithms, and SGA stands out as a distinct
approach.

Sign Test:
Sign Test evaluates paired observations to test for a

consistent difference between two conditions, considering
only the direction of differences. The sign test was employed
to compare the median performance differences between
SGA and each competing algorithm.

Sign Test:SGA vs. VEA: SGA outperformed VEA on
7 out of 10 functions, with a p-value of 0.1719, indicating
a trend towards better performance by SGA, although not
statistically significant.

SGA vs. MVA: SGA outperformed MVA on 8 out
of 10 functions, with a p-value of 0.0547, suggesting a
borderline statistically significant difference.

SGA vs. GWO: SGA outperformed GWO on 7 out of
10 functions, with a p-value of 0.1719, again showing a trend
towards better performance by SGA.

SGA vs. GOA: SGA outperformed GOA on 8 out of
10 functions, with a p-value of 0.0547, again showing a trend
towards better performance by SGA.
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FIGURE 3. The process of SGA for benchmarks.

SGA vs. PSO: SGA outperformed PSO on 6 out of
10 functions, with a p-value of 0.1931, again showing a trend
towards better performance by SGA.

SGA vs. HHO: SGA outperformed PSO on 6 out of
10 functions, with a p-value of 0.1931, again showing a trend
towards better performance by SGA.

SGA vs. SCA: SGA outperformed SCA on 6 out of
10 functions, with a p-value of 0.1931, again showing a trend
towards better performance by SGA.

Wilcoxon Signed-Rank Test:
Wilcoxon Signed-Rank Test compares two related samples

to assess differences in their population mean ranks, con-
sidering both magnitude and direction of differences. This
test provided a more detailed comparison by considering the
magnitude of performance differences.

SGA vs. VEA: The test statistic was 17.0 with a p-value
of 0.083, indicating a trend towards better performance by
SGA.

SGA vs. MVA: The test statistic was 8.0 with a p-value
of 0.005, confirming a statistically significant difference in
favor of SGA.

SGA vs. GWO: The test statistic was 9.0 with a p-value
of 0.007, indicating a statistically significant difference,
confirming SGA’s superior performance over GWO.

SGA vs. GOA: The test statistic was 10.0 with a p-value
of 0.006, indicating a statistically significant difference,
confirming SGA’s superior performance over GOA.

SGA vs. PSO: The test statistic was 13.0 with a p-value
of 0.004, indicating a statistically significant difference,
confirming SGA’s superior performance over PSO.

SGA vs. SCA: The test statistic was 15.0 with a p-value
of 0.009, indicating a statistically significant difference,
confirming SGA’s superior performance over SCA.

SGA vs. HHO: The test statistic was 7.0 with a p-value
of 0.003, indicating a statistically significant difference,
confirming SGA’s superior performance over HHO.
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FIGURE 4. The process of SGA for benchmarks.

These statistical analyses provide a robust validation of
the performance of SGA. The results demonstrate that SGA
frequently outperforms other algorithms and highlight its
effectiveness in solving complex optimization problems.

B. ROUTE OPTIMIZATION DESIGN IN INTERNET OF
VEHICLES ENVIRONMENT
The objective function of the problem aims to maximize both
the connectivity probability and connection quality of the
current routes from the origin to the destination, as outlined
in [38]. The constraints are Signal to Interference and
Noise Ratio threshold(SINRth) to find more trustworthy and
conjunct route. The Volcano Eruption Algorithm (VEA) was
utilized to determine the optimal route from the origin to the
destination. Tables 6, 7, and 8 show a comparative analysis
of the results achieved using the SGA method in comparison
to other methods for Problems 1, 2, and 3, respectively.
Both algorithms generated initial solutions randomly, which

were then enhanced through their respective optimization
processes. The results after five iterations demonstrate the
extent of improvement achieved by each algorithm.

Problem 1 [38]:

max
ζ

F(ζ ) = λ1 × PC(ζ )+ λ2 × SINR(ζ ) (8)

where

PC(ζ ) =
n∏
i=1

PC(ei),

SINR(ζ ) =

∑n
i=1 SINR(ei)−

∑n
i=1 SINRth(ei))∑n

i=1 SINR(ei)
, (9)

subject to SINR(ζ ) ≥ SINRth(ζ ). (10)

In the problem statement above, F(ζ ) refers to the objective
function that comprises a set of routes Z from the origin
to the destination. The simulation weights, λ1 and λ2, were
experimentally determined, and their total is equal to 1.
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FIGURE 5. Contour of the functions when SGA are applied.

The connectivity and reliability of the routes are represented
by PC(ζ ) and SINR(ζ ), respectively. The connectivity and
reliability of the street and link are indicated by PC(ei) and
SINR(ei), respectively.
Problem 2 [39]:

max
y
F(y) = λ1PC(y)

+ λ2PDR(y)+ λ3
Dth − Dy
D(y)

×
1

(1+ Dv(y))
(11)

where

PC(y) =
n∏
i=1

PC(ei),

PDR(y) =
n∏
i=1

PDR(ei),

D(y) =
n∑
i=1

D(ei),

Dv(y) =
n∑
i=1

Dv(ei)
n

, (12)

subject to D(y) ≤ Dth. (13)

Problem 3 [40]

max
x

F1(x) = ηN (14)

max
x

F2(x) = σN (15)

where

ηN =
N .σN∑M

m=1(Pt,m + Ps,m)+ Pt,MBS + Ps,MBS
(16)

The objective functions for SCIoT allocation can be
expressed as follows: f1 is designed to maximize energy
efficiency (ηN ), and f2 is intended to maximize the average
data rate (σN ). The purpose of these objective functions is
to establish an infrastructure platform that can accommodate
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FIGURE 6. Contour of the functions when SGA are applied.

ultra-dense IoT traffic in Smart-SCV and andPs,m andPs,MBS
are the transmission power for SBSs and MBS, respectively.

C. SGA IN MACHINE LEARNING
In today’s world, all aspects of human life are affected
by artificial intelligence, and this branch of technology is
developing and expanding day by day. In other words, with
the emergence of this field of science, people’s way of life
and work has undergone changes that have brought both
important and positive advantages to mankind and brought
various negative effects. In this section, the effectiveness
of using the presented metaheuristic algorithm in finding
the optimal solution of a function by the neural network
is investigated. Neural networks can model non-linear
problems and because of this feature, they can be used in
many different problems such as ‘‘Pattern Recognition’’,
‘‘Dimension Reduction’’, machine translation, ‘‘Anomaly
detection’’, ‘‘Computer Vision’’, ‘‘Natural Language Pro-
cessing’’, disease diagnosis, stock price prediction, and

others. In general, neural network applications are divided
into three groups: ‘‘Classify’’ data, ‘‘Clustering’’ data, and
‘‘Regression’’ problems. A basic neural network is typically
composed of three layers: an input layer, a hidden layer, and
an output layer. Each of these contains a set of nodes that
function similarly to the ‘‘neurons’’ of the human brain.

In this section, a simple neural network with only one
hidden layer (containing 30 neurons) and an input, and output
layer with 2 neurons is used. The goal is to estimate the
optimal value of the objective function using this network.

For this purpose, we have defined the cost function of the
desired network as the equation (x), the aim of which is to
find an estimate of its minimum value. This experiment has
been done in the following two ways. In the first method, the
input values of the neural network are generated randomly,
in a certain interval with a uniform distribution. Then the
input propagates to the network to generate two outputs X1
and X2. In this step, the objective function value (considered
here as the network error) is calculated using the output of
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TABLE 1. Optimization test functions examples 4-9.

TABLE 2. Results of SGA for examples 1-3.

TABLE 3. Comparison of SGA against competing algorithms on 100-dimension of CEC 2013 Benchmark function.

FIGURE 7. Comparison of the Neural Network with and without SGA.

the network. The amount of error decreases with different
iterations iteratively. Figure 7 shows the output of the network

with and without SGA for 30 iterations. The best minimum
value obtained by the network without SGA is -25.0367,
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TABLE 4. Comparison of SGA against competing algorithms on 50-dimension of CEC 2013 benchmark function.

but by using SGA to generate inputs for the same network
is −32.

Also, the values of X1 and X2 during different iterations
and the values of these two variables for the minimum value
of the error function (X1 = 0.0158785 and X2 = 9.73E-01)
are shown in Figure 8.
In our subsequent experiment, we employed an alternative

scenario to assess the impact of SGA in optimizing the
inputs of our neural network with the goal of minimizing
the loss function. In this experiment, rather than selecting
neural network inputs randomly from a predefined interval,
we implemented the SGA strategy as follows:

1) At the outset, randomly select a set of n points from the
primary input set.

2) From the set of points selected in step 1, a subset of k
points that yielded the lowest values for the objective
function are identified.

3) Around each of the k selected points, a circular region
with a defined radius is constructed, and within these
regions, randomly additional points are selected.

4) All the points chosen in step 3were collectively utilized
as the input for our neural network in the subsequent
experiment.

By incorporating SGA into our neural network framework,
we achieved a substantial enhancement, as evidenced by a
notable reduction in the objective function values, reaching a
remarkable−31.9642, as illustrated in Figure 7. This tailored
approach enabled us to fully harness the potential of SGA,
resulting in a significant optimization of our neural network
inputs, ultimately leading to the minimization of the loss
function.

In this context, our neural network has demonstrated a
marked improvement in its ability to estimate the function and
its underlying conditions. It becomes evident that the choice
of neural network inputs exerts a profound influence on the
accuracy of our function’s minimum value estimation. This
underscores the pivotal role of well-informed input selection
in the effective optimization of functions through neural
networks.

Figure 8 shows the values of X1 and x2 for different
repetitions and different values of the obtained error function.
Using this method, the lowest estimated value obtained by
the neural network for the desired function is −31.9642 for
X1 = 0.00406893 and X2 = 0.000413323.
The same experiments have also been performed on a

deep neural network with three layers, each containing
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TABLE 5. Comparison of SGA Against competing algorithms on 30-dimension of CEC 2013 benchmark function.

TABLE 6. Comparison and improvement from random initial solutions (RIS) by SGA for internet of vehicles problem 1.

30 neurons - Figure 9, in a similar manner. Figure 10 shows
the output of the deep neural network with and without SGA
for 30 iterations. Also, the values of X1 and X2 during
different iterations and the values of these two variables for
the minimum value of the error function in the deep neural
network are shown in Figure 11.

IV. CONVERGENCE OF THE ALGORITHM
The most important challenge of a meta-heuristic is conver-
gence behavior and property. The theorem presented below
demonstrates the convergence of the proposed algorithm.
Theorem 1: The sequenceFk , generated by the steps of the

algorithm, converges to the optimal solution.

Proof:
Let:

(Fv) = (F(tv)) = (F(tv1),F(t
v
2), . . . ,F(t

v
n))

= (F (v)
1 ,F (v)

2 , . . . ,F (v)
n )

According to step 6:

|f (x ij+1)− f (x
i
j )| = d(f (xj+1), f (xj)) = d(Fj+1,Fj) < ϵ1

Therefore |f (x ij+1)−f (x
i
j )| for each i. There is large number

such as N which k + 1 > k > N and j = 1, 2, . . . , n.. Now
we have:

|F (k+1)
j − F (k)

j | < ϵ1
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FIGURE 8. Comparison of the values of X1 and X2 by the Neural Network with and without SGA.

FIGURE 9. Deep neural network with three layers, each containing 30 neurons.

Now let m=k+1, r=k then we have:

|F (m)
j − F

(r)
j | < ϵ1 For m > r > n

For any fixed index j between 1 and n, the sequence
(F (1)

j ,F (2)
j , . . . ) is a Cauchy sequence of real numbers, which

means it converges to a limit, denoted as Fk . Using this
property for each of the n indices, we define the n-tuple

(F1,F2, . . . ,Fn). Let m = k + 1 and r = k , then we can
show that for all k ≥ r , the following inequality holds:

d(Fm,Fr ) < ϵ1

This shows that the sequence of objective function values
(Fk ) generated by the algorithm is convergent to the optimal
solution.
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FIGURE 10. Comparison of the Deep Neural Network with and without SGA.

FIGURE 11. Comparison of the values of X1 and X2 by the Deep Neural Network with and without SGA.

Figure 12 shows the convergency process of the algorithm
for Examples 4-9. Also, Figure 7 shows a comparison for the

rate of convergence for Examples 4-7. Based on the results,
the rate of convergency is strongly related to the generated
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FIGURE 12. The process of finding optimal solution (convergence) by SGA - Examples 4-9.

TABLE 7. Comparison of EGA and other algorithms for internet of vehicles problem 2.

TABLE 8. Comparison of EGA and other algorithms for internet of vehicles problem 3.

random initial solutions. So, finding a way to generate a
suitable initial solution would be very significant in the area
of meta-heuristics.

V. COMPLEXITY OF THE ALGORITHM
The following outlines the computational complexity of the
main steps involved in SGA:

1) Initial Solution Generation (Step 1): Generating an
initial feasible solution (x0, y0) is a constant time
operation, O(1).

2) Solution Update and Direction Change (Steps 2 and
3): In each iteration, the solution is updated using
xi = x0 + αdj and xi+1 = xi + ϵdi. These
updates involve basic arithmetic operations, each of
which is O(1). Since these steps are repeated N

times for each iteration, the complexity per iteration
is O(N ).

3) Set Creation and Population Generation (Steps 4 and
5): Creating a set of roots and stems, and generating
the initial population, involves checking and updating
the best solution, which is O(N ).

4) Iteration Loop (Steps 6 and 7): The algorithm itera-
tively updates the solutions until a termination condi-
tion is met (maximum iterations M1 or improvement
threshold ϵ1). Each full iteration involves the steps
mentioned above, resulting in a complexity ofO(N ) per
iteration.

5) Overall Complexity: Considering the iterative nature
of the algorithm and the steps within each iteration,
the overall complexity of SGA can be expressed as
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O(M1 × N ), where M1 is the maximum number of
iterations and N is the number of solutions.

The computational complexity of SGA is O(M1 × N ),
this complexity indicates that the algorithm scales linearly
with the number of solutions and the number of iterations,
making it efficient for a wide range of optimization problems,
including those encountered in neural network training and
IoT applications.

VI. CONCLUSION AND FUTURE WORK
The proposed algorithm, SGA, has been demonstrated as
an effective meta-heuristic method designed to enhance
the performance of machine learning models by generating
efficient inputs for the training process. Our experimental
results have shown that SGA performs well across a variety
of functions and optimization test problems, validating its
robustness and versatility.

SGA introduces a novel approach distinct from traditional
meta-heuristic methods, as it does not rely on principles
of swarm intelligence or animal behavior. Instead, it is
inspired by natural events and integrates elements of natural
systems and evolutionary computation, utilizing evolutionary
processes and stochastic distribution techniques. One of the
key strengths of SGA is its ability to distribute solutions
across the feasible solution space effectively, leading to
superior outcomes with fewer generations compared to
other meta-heuristic approaches. This efficiency in reaching
optimal solutions underscores SGA’s potential for time-
sensitive applications.

The successful implementation of SGA opens new avenues
for addressing various optimization challenges. Specifically,
SGA can be applied to:

1) PracticalOptimization Problems:SGA iswell-suited
for solving complex practical optimization problems,
such as stowage planning, where the distribution of
solutions in feasible spaces can lead to significant
improvements.

2) Big Data Analysis: The algorithm’s ability to handle
large datasets and generate efficient solutions makes it
ideal for big data applications, facilitating better data
analysis and decision-making processes.

3) Discrete Optimization Problems: SGA’s flexible
framework allows it to be applied effectively to
discrete optimization problems, providing high-quality
solutions in a computationally efficient manner.

4) Hybrid Approaches: Combining SGA with exact
methods can enhance solution accuracy. For instance,
using SGA to estimate gradient vectors can improve the
performance of exact optimization methods, leading to
more precise outcomes.

Future research should focus on exploring and expanding
the capabilities of SGA in various domains. Potential areas
for further investigation include:

1) Algorithm Enhancement: Enhancing the SGA algo-
rithm by integrating adaptive mechanisms to dynam-
ically adjust its parameters, potentially improving its

performance across different types of optimization
problems.

2) Scalability Studies: Conducting extensive scalability
studies to evaluate SGA’s performance in large-scale
optimization problems, ensuring its applicability in
real-world scenarios with significant complexity and
data volume.

3) Cross-Domain Applications: Investigating the appli-
cation of SGA in diverse fields such as finance,
healthcare, and logistics to validate its versatility and
effectiveness in solving domain-specific optimization
challenges.

4) Comparative Analysis: Performing comprehensive
comparative analyses with other state-of-the-art meta-
heuristic algorithms to benchmark SGA’s performance,
identifying areas of strength and opportunities for
improvement.

5) Hybrid Model Development: Developing hybrid
models that combine SGA with other optimization
techniques, such as machine learning algorithms,
to create more robust and efficient solutions for
complex optimization problems.
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