Microchemical Journal Volume 204, September 2024, 111052 ## Highly efficient electrochemical ascorbic acid determination via a cooperative catalytic effect of dendritic Bi/Bi₂O₃ junctions and oxygen vacancies Maged N. Shaddad ^a ♀ ☒, Mshari A. Alotaibi ^a, Abdulrahman I. Alharthi ^a, Abdulaziz A. Alanazi ^a, Prabhakarn Arunachalam ^b ♀ ☒, Salih M.S. Zebari ^c, Abdullah M. Al-Mayouf ^b, Matar N. Al-shalwi ^b, Talal F. Qahtan ^d ♀ ☒ Show more > + Add to Mendeley 🗬 Share 🗦 Cite https://doi.org/10.1016/j.microc.2024.111052 7 Get rights and content > ## Abstract This study developed an electrochemical sensor for ascorbic acid (AA) using dendritic nanostructured (DN) bismuth/bismuth oxide thin films with oxygendeficient (SOD) surfaces (SOD-DN Bi/Bi₂O_{3-x} thin films) that were successfully fabricated through electrodeposition on fluorine-doped tin oxide (FTO) substrates. Using cyclic voltammetry and amperometry, we assessed electrocatalytic activity in neutral media. The prepared SOD-DN Bi/Bi₂O_{3-x} thin film was used, for the first time, as electrodes in a highly sensitive and selective electrochemical AA sensor. The SOD-DN Bi/Bi₂O_{3-x} thin film with optimal characteristics was shown to be ultrasensitive in AA detection in neutral conditions, whereby high detection sensitivity $\sim 2.30 \,\mu\text{A}\,\mu\text{M}^{-1}\text{cm}^{-2}$ over a wide range of AA concentration $\sim 0.01 \, \mu M$ to 1.0 mM and working potential range $\sim 0.3-1.0 \text{ V}$ vs. SCE. The results indicate that SOD-DN Bi/Bi₂O₃_ x can provide large amounts of active reaction sites, thereby enhancing electrocatalytic activity and electrochemical sensitivity. Due to this, it is a unique electrochemical sensor able to detect AA without interference from DA, UA, or other contaminants. A further amperometric test demonstrated that this sensor was capable of detecting AA even under conditions of dopamine and uric acid. Accordingly, the proposed sensor provides a promising avenue for developing electrochemical sensing for AA determination. This strategy introduces a novel type of high-efficiency electrocatalyst for ultrasensitive detection of medical and environmental biomarkers.