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A B S T R A C T

Accurately predicting thermo-physical properties (TPPs) of MXene/graphene-based nanofluids is crucial for
photovoltaic/thermal solar systems, driving focused research on developing precise TPP predictive models. This
study presents optimized multi-layer perceptron neural network (MLPNN) models, leveraging Bayesian opti-
mization to refine architectural and training hyperparameters, including hidden layers, neurons, activation
functions, standardization, and regularization terms. A comparative analysis of Bayesian acquisition func-
tions—the probability of improvement (POI), lower confidence bound (LCB), expected improvement (EI), ex-
pected improvement plus (EIP), expected improvement per second plus (EIPSP), and expected improvement per
second (EIPS)—demonstrated that the POI-MLPNN achieves the most accurate results, as evidenced by the lowest
MAPE of 1.0923 % and exceptional consistency with an R-value of 0.99811. The EI-MLPNN and EIP-MLPNN
models recorded the same outputs. The EI/EIP-MLPNN (R = 0.99668) model excels in consistency over LCB-
MLPNN (R = 0.99529) and EIPSP-MLPNN (R = 0.99667). The optimized models offer a reliable, cost-efficient
alternate for experimental and computational TPP analyses. Leveraging insights from these models enables
better control over nanofluid TPPs in solar systems, enhancing energy conversion efficiency.

1. Introduction

Nanofluids, precisely engineered colloidal suspensions of nano-
materials (NMs) in a base fluid, have gained significant attention due to
their potential to improve heat transfer and thermophysical properties
(TPPs) in various applications [1,2]. Extensive research has established

that the heat transfer performance of nanofluids is strongly influenced
by the composition of the mixture, including the choice and size of
nanoparticles, as well as the base fluid used [3,4]. This highlights the
importance of carefully considering and manipulating these factors in
nanofluid design. Empirical evidence has demonstrated that the addi-
tion of NMs like MWCNT [5,6], Fe3O4 [7], TiO2 [8], Al2O3 [9], CuO
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[10], MgO [11], ZnO [12], CeO2 [13], and SiO2 [14] to various based
fluids effectively enhances the specific heat capacity (SHC), thermal
conductivity (TC), and dynamic viscosity (DV) of the resulting nano-
fluids. In addition, the use of binary/ternary hybrid nanofluids, which
combine different types of NMs, has shown great promise in enhancing
the thermophysical properties compared to mono nanofluids [15,16].
This presents an advantage in terms of performance, further highlighting
the potential of nanofluids in various applications such as heat ex-
changers, heat pipes, microchannel heat sinks, solar collectors, drilling
fluids, filtration control, electrical cooling mechanisms, and biomedical
engineering [17–22]. The significant importance attributed to nano-
particles has spurred extensive research efforts to identify materials with
exceptional efficacy tailored explicitly for various applications. These
efforts led to the introduction of two-dimensional materials with
improved properties [23]. Graphene-based NMs can be referred to as
among the most cutting-edge two-dimensional materials that have been
introduced. These NMs have garnered considerable interest owing to
their exceptional physicochemical and thermophysical properties [24].
Graphene-based NMs possess unique properties in structure, optics,
thermals, electronics, and mechanics, making them well-suited for a
wide range of biomedical applications [25–27]. The physical, optical,
and electrochemical properties of these NMs have played a vital role in
advancing susceptible and selective biosensor devices [28]. Addition-
ally, Graphene’s exceptional properties, including high surface area,
conductivity, and ease of functionalization, make it an ideal platform for
synthesizing metallic nanoparticles-graphene nanocomposites [29].
Graphene-based nanomaterials (GNMs), with their exceptional TPPs,

are an ideal nanomaterial for nanofluid preparation [30]. GNMs have
shown significant potential for enhancing heat transfer due to their high
aspect ratio and thermal conductivity [31]. Studies on graphene nano-
fluids have revealed that higher GNM concentrations and fabrication
temperatures improve thermal conductivity [32]. Recent research
revealed that including graphene in nanofluids substantially impacts TC,
resulting in enhancements ranging from 1.2 % to 83.4 % [33]. Copper
nanoparticles coated with graphene NMs demonstrate significantly
higher TC, ranging from 3.7 to 18.2 times that of copper nanofluids [34].
Graphene oxide nanofluids also exhibit increased TC at higher mass
concentrations [35]. Equilibrium molecular dynamics simulations have
confirmed that nanofluids’ TC increases as the graphene nanosheet
loading fraction rises [36]. The addition of GNMs to nanofluids has an
impact on the fluid’s dynamic viscosity. At low GNM concentrations, the
base fluid’s viscosity decreases, with a maximum reduction of 17 %
observed at a concentration of 0.5 × 10− 3 wt % and 50 ◦C [37]. How-
ever, at higher GNM concentrations, the viscosity of graphene nano-
fluids is similar to most nanofluids [38]. The presence of graphene
nanoflakes reduces the time required to reach desired viscosities in
hydrate systems [39]. Adding graphene nano-plates to non-aqueous
nanofluids affects viscosity and provides lubrication effects depending
on the GNM concentrations [40]. Factors like shear rate, concentration,
base fluids, and temperature influence the rheological properties of
graphene-based nanofluids.
On the other hand, in recent years, MXene NMs, notably Ti3C2Tx,

have gained prominence due to their distinctive properties and wide-
ranging applications. These materials exhibit high electrical and ther-
mal conductivity, a large surface area, and hydrophilicity, making them
well-suited for diverse purposes. Extensive studies on their properties
have yielded promising outcomes across multiple disciplines [41,42].
MXene nanomaterials have found applications in various industries,
including energy systems, optics, electromagnetic interference shield-
ing, water purification, and photocatalysis, showcasing their versatility
and potential impact [43,44]. Additionally, MXenes hold promise in
biomedical fields such as tissue engineering, wound healing, antibac-
terial agents, and biosensors, thanks to their biocompatibility, biode-
gradability, and antibacterial properties [45]. Furthermore,
MXene-based nanofluids have diverse applications, including in photo-
voltaic/thermal (PV/T) solar systems. In this regard, Wang et al. [46]

found that MXene/water nanofluid achieved a maximum photo-thermal
conversion (PTC) efficiency of 63.35 %, surpassing graphene-based
nanofluids. Aslfattahi et al. [47] demonstrated the high potential of
MXene nanofluids in solar thermal applications when added to soybean
oil. Said et al. [48] reported a significant increase in TC (70–89 %) in a
parabolic trough collector using silicon oil/MXene nanofluid. These
findings underline the positive impact of MXene nanofluids on PV/T
solar systems.
Recent research has clarified the significant potential of MXene NMs

in improving the TPPs of nanofluids. In a study by Mao et al. [49],
notable enhancements in the TC of nanofluids were discovered. The
water/EG/MXene and water/MXene nanofluids exhibited improve-
ments of 27.3 % and 30.6 % in TC, respectively. Despite a slight increase
in DV, the researchers foresee MXene-based nanofluids holding signifi-
cant promise for cooling applications. Bao et al. [50] investigated the
stability, TC, and DV of Ti3C2Tx MXene/EG nanofluid. They observed a
noteworthy 9.64 % increase in TC of nanofluid. Moreover, the DV of the
nanofluid, at a concentration of 1 vol%, was significantly lower than that
of nanofluids containing MWCNT and graphene at a concentration of
0.1 vol%. The produced nanofluid exhibited excellent stability over 30
days, showcasing its promising performance.
Artificial intelligence (AI) is an interdisciplinary field within com-

puter science that focuses on creating and developing intelligent ma-
chines capable of performing tasks traditionally requiring human
intelligence [51]. These machines are designed to exhibit cognitive
abilities such as learning, reasoning, problem-solving, and
decision-making. AI encompasses subfields such as machine learning
(ML), natural language processing, computer vision, and robotics [52].
In recent years, ML techniques have emerged as powerful modeling tools
within AI, particularly for complex systems [53–55]. Nanofluids, with
their intricate TPPs, present a challenging system to model accurately,
especially when multiple input variables are involved [56]. By
employing ML techniques, modeling nanofluids’ TPPs offers the poten-
tial to reduce costs and save time that would otherwise be spent on
frequent experimental investigations. Table 1 provides an overview of
recent applications of machine learning in predicting the TPPs of
nanofluids containing GNMs or MXenes.
The machine learning techniques presented in Table 1, including

artificial neural networks (ANNs), Gaussian process regression (GPR)
[74], boosted regression trees (BRT) [75], and support vector machines
(SVM) [76], are widely recognized and acknowledged. Among them,
ANNs have gained prominence due to their exceptional ability to
establish effective relationships between dependent and independent
variables. However, it is worth noting that other machine learning
methods, such as multivariate adaptive regression spline (MARS) [77],
kernel extreme learning machine (KELM) [77], random forest (RF) [78],
least-squares support vector machine (LSSVM) [79], K-nearest neigh-
bors (KNN) [79], radial basis function neural network (RBFNN) [79],
locally weighted linear regression (LWLR) [80], multigene genetic
programming (MGGP) [81], AdaBoost regression (ABR) [82], extra tree
regression (ETR) [82], extended Kalman filter (EKF) [83], and adaptive
neuro-fuzzy inference system (ANFIS) [84] also exhibit the significant
potential of AI algorithms in real-world applications. These algorithms
have demonstrated the capacity to reduce financial and computational
costs while accurately predicting nanofluids’ various TPPs.
The reviewed studies provide clear evidence of the significance of

nanofluids’ thermophysical properties in various systems. Particularly
noteworthy is the importance of nanofluids containing MXenes [46–48]
and graphene-based nanomaterials [32–35] due to their widespread
applications, especially in renewable energy. This research focuses on
accurately predicting dynamic viscosity, a crucial thermophysical
property essential for designing energy systems. According to Table 1,
neural network-based models show high precision in predicting the
TPPs. Therefore, in this study, multilayer perceptron neural networks
(MLPNN) are used to predict the dynamic viscosity of nanofluids con-
taining MXene and graphene. To further improve the MLPNN-based DV
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predictive models, Bayesian optimization is applied for the first time to
fine-tune hyperparameters. Additionally, this study offers a novel
comparison of various acquisition functions for optimizing MLPNN
hyperparameters, including expected improvement per second plus
(EIPSP), expected improvement (EI), expected improvement plus (EIP),
expected improvement per second (EIPS), lower confidence bound
(LCB), and probability of improvement (POI). This comparison is one of
the key aspects of the present study that has been neglected in previous
research. Its precise adjustment can reveal the potential of Bayesian
optimization and serve as a basis for improving the modeling process in
future studies. The models developed in this research provide engineers
with profound insights into the dynamic viscosity of the nanofluid under
investigation, enabling accurate predictions even in out-of-test condi-
tions. These advancements have significant implications for enhancing
efficiency and effectiveness across various industries, ranging from en-
ergy production systems to thermal management. Furthermore, the
present research explicitly outlines its alignment with the sustainable
development goals (SDGs), thereby highlighting its broader societal

implications and strengthening the emphasis on research with positive
impact. By demonstrating the potential of the developed models to
optimize energy consumption and advance sustainable nanofluid-based
solar technologies, we establish a clear connection to SDGs 7 (Affordable
and Clean Energy) and 9 (Industry, Innovation, and Infrastructure). This
enhancement significantly strengthens the research’s contribution to the
global sustainability agenda. Moreover, the developed models consid-
erably reduce the costs associated with experimental investigations and
computational simulations, making them highly practical and
cost-effective. Fig. 1 provides a comprehensive roadmap outlining the
distinct phases of the present research. A dedicated section for thorough
review and analysis accompanies each step. The first two steps involve
the introduction of the database obtained from experimental research,
followed by data analysis and pre-processing. Subsequently, the third
stage focuses on incorporating machine learning algorithm and the
optimization process for hyperparameters. This stage entails the inte-
gration of artificial neural networks with the Bayesian approach to
optimize the hyperparameters effectively. Moving forward, the

Table 1
A summary of recent studies presenting ML-based models to predict TPPs of nanofluids containing GNMs or MXenes.

Reference Year TPP Base Fluid Nanomaterials ML Method Accuracy

[57] 2020 TC Water GO-SiO2 ANN R2 = 0.999
[58] 2021 TC EG-Water GO-CuO ANN R = 0.999103
[59] 2021 DV EG Graphene ANN R2 = 0.9978
[60] 2021 DV Palm oil MXene ANN R = 0.99975
[61] 2021 TC EG-Water GO-Al2O3 ANN R = 0.999
[62] 2021 DV Aqueous solution of ionic liquid MXene ANN R2 = 0.99986
[62] 2021 TC Aqueous solution of ionic liquid MXene ANN R2 = 0.9946
[63] 2021 DV Palm oil MXene SVM R2 = 0.99987
[64] 2022 DV Diethylene glycol and ionic liquid MXene ANN R = 0.99963
[64] 2022 SHC Diethylene glycol and ionic liquid MXene ANN R = 0.99872
[64] 2022 TC Diethylene glycol and ionic liquid MXene ANN R = 0.99783
[65] 2022 DV EG rGO-Fe3O4-TiO2 BRT, SVM, and ANN R = 0.9960 to 0.9979
[66] 2022 DV Water Graphene ANN R2 = 0.999
[67] 2022 TC Silicone oil MXene ANN R = 0.99687
[65] 2022 Density EG rGO-Fe3O4-TiO2 BRT, SVM, and ANN R = 0.9973 to 0.9989
[68] 2022 DV, TC, and SHC Aqueous Ionic liquid solution MXene GPR R = 0.9942 to 0.9998
[68] 2022 DV, TC, and SHC Aqueous Ionic liquid solution MXene SVM R = 0.9741 to 0.9958
[69] 2023 DV Water GO-MXene ANN R = 0.9926
[69] 2023 SHC Water GO-MXene ANN R = 0.9913
[69] 2023 TC Water GO-MXene ANN R = 0.9989
[70] 2023 DV Water MXene ANN MSE = 4.7333E-04
[70] 2023 TC Water MXene ANN MSE = 1.1160E-04
[71] 2023 TC and DV EG-Water Graphene-CuO-Al2O3 ANN R = 0.99496
[72] 2023 TC Water GO-CuO BRT and SVM R2 = 0.9923 to 0.9988
[72] 2023 DV Water GO-CuO BRT and SVM R2 = 0.9976 to 0.9992
[73] 2023 TC and DV Water GO-Al2O3 SVM and ANN R = 0.9715 to 0.9991

Fig. 1. Roadmap of the present study.
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subsequent step centers on developing predictive models, with a specific
emphasis on evaluating various acquisition functions within the
Bayesian framework. Finally, in the last stage, the developed models
undergo evaluation using different statistical criteria, and comparisons
are made utilizing various graphical tools.

2. Datasets

ANNs allow programs to recognize patterns and solve common
problems in artificial intelligence, machine learning [85–88]. The con-
struction of enhanced predictive ANN-based models was based on
employing empirical data sets, as delineated in the study conducted by
Jin et al. [89]. The researchers quantitatively assessed the dynamic
viscosity characteristics of aqueous hybrid nanofluids infused with
graphene nanomaterials and MXene nanocomposites. The nano-
materials’ mass fraction (MF) was meticulously evaluated within a
spectrum of 0–2%, and thermal conditions were methodically varied
between 5 and 60 ◦C during the experimentation. During the synthesis of
mono and hybrid nanofluids, varied proportions of graphene andMXene
nanomaterials were considered. The preliminary stage in developing
models predicated on machine learning entails an in-depth delineation
of the determinants affecting dependent variables. It is evident that
many parameters pertaining to the base fluid and the NMs exert partial
to substantial influence on the dynamic viscosity of the nanofluid. Based
on antecedent investigations [56,78,81], independent variables that
harbored considerable potential to impact the dynamic viscosity of
diverse nanofluids were subjected to a systematic sequence of heuristic
evaluations. This process was undertaken with the objective of selecting
the parameters with maximum efficacy in accordance with the present
dataset. This methodology enhances the accuracy and expedience of
computational procedures while concurrently endeavoring to attenuate
the intricacy inherent in the models to a feasible extent. Ultimately, it
was ascertained that the mass fraction, temperature, and the MXene
ratio emerge as the paramount determinants.
Table 2 delineates the descriptive statistical information for the

assorted variables under consideration. The analysis of skewness and
kurtosis values offers a quantitative mechanism for appraising the extent
of normal (Gaussian) distribution conformity exhibited by the variables.
Referencing antecedent research [90–92], the discernment of a Gaussian
distribution within the dataset is contingent upon the containment of
skewness values within the range of − 1 to +1 and the limitation of
kurtosis values to the confines of − 2 to +2. Considering both criteria
concurrently, one can assert that the temperature and the mass fraction
conform to a Gaussian distribution. Furthermore, as illustrated in the
table, the MXene ratio and the DV exhibit the most pronounced kurtosis
among the independent and dependent variables. This suggests a
divergence from the Gaussian distribution and a significant discrepancy
between their median and mean values.
The box plot depicted in Fig. 2 graphically represents the dispersion

of normalized data across all variables. A box plot serves as a visual
depiction of dataset distribution that illustrates a data’s median, quar-
tiles, and outliers. The central box spans the first quartile (Q1) to the
third quartile (Q3), with a line at the median. Whiskers stretch from the

box to the data’s min and max that fall within 1.5 times the interquartile
range (IQR), and points beyond this are outliers. In order to achieve a
consolidated graphical representation of all variables, data normaliza-
tion within the scope of [− 1, 1] is performed in the following form:

xnorm =
x − xmin

xmax − xmin
× 2 − 1 (1)

To facilitate an enhanced understanding of the data’s dispersion,
Fig. 3 elucidates the frequency distributions of both independent and
dependent variables via histograms. It is particularly noteworthy that
Fig. 3(a) accentuates the predominance of data points within a homo-
geneous temperature range from 5 to 60 ◦C. Moreover, an inspection of
Fig. 3(b) discloses that a considerable segment of the dataset demon-
strates mass fractions gravitating towards the extremities, proximate to
the minimum (0 wt%) and the maximum (2 wt%) thresholds. In addi-
tion, Fig. 3(c) provides evidence that the existence of MXene is princi-
pally infrequent within the dataset, signifying a dominant occurrence of
graphene-water mono-phase nanofluids. There exists a limited fre-
quency of MXene/graphene-water hybrid nanofluids, evidenced by in-
stances where the mass fraction of MXenes amounts to 25–50 % of the
nanocomposite materials.
The relationship between dependent and independent variables is

analyzed using the Kendall correlation coefficient (KCC) [93]. The KCC,
or Kendall’s tau coefficient, is a non-parametric statistic that measures
the ordinal association between two measured quantities. It evaluates
the strength and direction of the relationship, indicating whether pairs
of observations are concordant (similar rankings in both variables) or
discordant (dissimilar rankings). The KCC is calculated in the following
two steps.

1. Definition of pairs:
• A pair of observations

(
xi, yi

)
and

(
xj, yj

)
is concordant if both

elements agree in order: if xi > xj and yi > yj or xi < xj and yi < yj.
• A pair of observations is discordant if the elements disagree in
order: if xi > xj and yi < yj or xi < xj and yi > yj.

2. Formula:

KCC=
C − D

0.5n(n − 1)
(2)

where, C is the number of concordant pairs, D is the number of discor-
dant pairs, and n is the number of observations. The KCC ranges from − 1
to 1, with a value of 1 implying perfect agreement, − 1 indicating perfect
disagreement, and 0 suggesting no association. Essentially, KCC assesses
the rank correlation by comparing the number of concordant and
discordant pairs relative to the total pairs, which is valuable in scenarios
where the assumptions of parametric tests cannot be met.
Fig. 4 portrays the KCCs as a correlogram illustrating the in-

terdependencies among different variables. According to the informa-
tion in Fig. 4, the temperature exhibits the most substantial

Table 2
Descriptive statistics of observations.

Descriptive
statistics

Inputs Target

Temperature
(◦C)

MF (wt
%)

MXene ratio
(%)

DV
(mPa⋅s)

Minimum 5 0 0 0.5818
Maximum 60 2 50 1.7532
Mean 30.7143 1.2333 9.4444 1.0968
Std. Deviation 19.1315 0.8106 16.5371 0.2804
Skewness 0.1247 − 0.4097 1.6461 0.2564
Kurtosis 1.6690 1.4993 4.3127 2.2695

Fig. 2. Box plots of the studied variables.
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correspondence with the DV, evidenced by a KCC of − 0.71. The ensuing
analysis delineates a middling degree of correlation, with a KCC of 0.31,
between the MF and the DV. At the same time, the most tenuous link,
denoted by a KCC of 0.09, is detected between the DV and the MXene
proportion.

3. Methodology

3.1. Multilayer perceptron neural network (MLPNN)

A Multilayer Perceptron (MLP) is a class of feed-forward ANN that
comprises multiple layers of nodes, each layer fully connected to the
next one. An MLP is structured with a series of layers: the initial layer
takes in the data, while the final layer delivers a verdict or inference
based on that data [94,95]. Sandwiched between these, numerous
intermediary layers, often referred to as hidden layers, serve as the core
processing units of the network. ANN neurons function similarly to

neurons in a living organism, receiving inputs and generating corre-
sponding outputs in response [96]. For instance, as shown in Fig. 5, a
conventional architecture of an MLPNN is displayed, featuring a trio of
input variables that feed into a singular output. This configuration in-
corporates a pair of hidden layers, the first housing three neurons and
the second comprising two. MLPs employ a supervised learning process
known as backpropagation to train their architectures. Within a given
layer, every neuron forms a connection to each neuron in the subsequent
layer. The connections are defined by specific weights that are dynam-
ically refined throughout the training phase to optimize network per-
formance. For regression problems, MLPs can model complex, nonlinear
hypotheses that arise in real-world data, making them favorable for
capturing intricate patterns that simpler linear regressions cannot.
The products of inputs and their corresponding weights are aggre-

gated; this aggregate is then funneled through the node’s activation

Fig. 3. Histogram of the studied variables.

Fig. 4. Correlogram of KCC between various variables.

Fig. 5. A typical multilayer perceptron neural network structure.
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function. This function is pivotal in deciding if, and to what degree, the
signal should continue its journey through the network, ultimately
influencing the outcome. Activation functions like the sigmoid, tanh,
and ReLU introduce nonlinear properties to the network, which is
essential for learning nonlinear representations in data. Training anMLP
involves adjusting these weights through optimizing an error function,
where the most popular method is gradient descent, in tandem with
backpropagation, to compute the gradient efficiently. During this
training phase, the model is iterated over many cycles (epochs) through
the dataset, allowing it to learn progressively complex representations at
each hidden layer, thereby improving its prediction accuracy with each
pass.
Multiple elements influence the accuracy of the MLPNN-based

regression model, with crucial factors including the number of hidden
layers and their constituent neurons and the type of activation functions.
Moreover, the present research incorporates the regularization term
strength (lambda) and a standardization term, which, although they
receive less attention, play a significant role in fine-tuning the hyper-
parameters during the optimization of the MLPNNs.
Regularization represents a fundamental technique in machine

learning, strategically implemented to restrain the complexity of
models. Its primary purpose is to curb the occurrence of overfitting,
ensuring that models generalize well to new, unseen data rather than
capturing the noise in the training dataset. This technique involves
augmenting the loss function with a penalty term, which reduces the
model’s complexity by controlling the magnitude of the parameters. In
the current research, ridge regularization, a specific variant of regula-
rization, is utilized. This approach incorporates a term, denoted by
lambda, into the loss function directly proportional to the sum of the
squared values of the weights. The introduction of this term prompts the
model to maintain smaller weights centered on zero, an adjustment that
mitigates overfitting. Additionally, the study scrutinizes the effect of the
standardization term, which can be set to either "true" or "false", on the
precision of the model’s outputs. This binary term determines whether
each predictor variable should be centered and scaled based on its

corresponding column’s mean and standard deviation. By doing so, the
study assesses how normalizing input variables influences the model’s
performance, potentially enhancing the predictive accuracy by treating
all variables on a comparable scale and thereby improving the numerical
stability of the optimization process.

3.2. Bayesian optimization

The Bayesian approach to hyperparameter optimization constitutes a
sophisticated, probabilistic framework to identify the most effective
hyperparameters for a machine learning model [97]. In contrast to
exhaustive grid search or stochastic random search approaches,
Bayesian optimization leverages accumulated knowledge from previous
evaluations to make informed guesses about which hyperparameters are
likely to yield improved performance in subsequent trials. By adopting a
probabilistic model, often a Gaussian process, it assesses the relationship
between hyperparameters and the target metric, such as model accuracy

or loss [98]. Through this historical information, the optimization pro-
cess anticipates the utility of untested hyperparameters, thus prioritizing
the exploration of more promising regions of the hyperparameter space.
This method strategically directs the search using an acquisition func-
tion, which determines the potential value of new candidate points,
balancing the need to explore uncertain areas against exploiting known
high-performing zones. Consequently, Bayesian optimization is notably
more efficient than grid or random searches, finding better solutions
with fewer function evaluations [99].
The structure of the Bayesian optimization process relies heavily on

its acquisition function, which directs the choosing of the next hyper-
parameters to assess [100]. Common types of acquisition functions
include the probability of improvement (POI), lower confidence bound
(LCB), and various types of expected improvement (EI) formulation
[101].

4. Performance evaluation

To ascertain the performance of the assembled models predicated on
MLPNN, a comprehensive suite of statistical criteria was utilized
[102–104]:

Mean squared error: MSE =
1
n
∑n

i=1

(
Yi,Exp − Yi,Pred

)2 (2)

Meanabsolutepercentage error: MAPE(%)=
1
n
∑n

i=1

⃒
⃒
⃒
⃒
Yi,Pred − Yi,Exp

Yi,Exp

⃒
⃒
⃒
⃒×100

(3)

Correlation coefficient: R =

∑n

i=1

(
Yi,Exp − Yi,Exp

)(
Yi,Pred − Yi,Pred

)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1

(
Yi,Exp − Yi,Exp

)2∑n

i=1

(
Yi,Pred − Yi,Pred

)2
√

(4)

Yi,Exp, Yi,Pred, and n denote the experimental data points, the corre-
sponding predicted values, and the number of observations within the
database. The metrics MSE and MAPE quantify the errors in the models,
with values converging toward zero, indicative of enhanced precision
within a given model. Additionally, the R, R2, and IA function as quan-
titative indicators of the concordance between the model’s predicted
values and the empirical laboratory data, ranging within [0, 1]. A pro-
clivity for these coefficients to approach unity indicates an augmented
reliability of the model under scrutiny. In tandem with the previously
delineated evaluative criteria for model assessment, the Relative Error
(RE) offers a nuanced graphical depiction of the error corresponding to
individual data points. The calculation of RE for each data point is
achieved utilizing the following relationships:

Coefficient of determination: R2 = 1 −
∑n

i=1

(
Yi,Pred − Yi,Exp

)2

Y2i,Exp
(5)

Willmott’s Index of Agreement: IA = 1 −

∑n

i=1

(
Yi,Exp − Yi,Pred

)2

∑n

i=1

( ⃒
⃒Yi,Pred − Yi,Exp

⃒
⃒+

⃒
⃒Yi,Exp − Yi,Exp

⃒
⃒
)2

(6)
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REi(%)=
Yi,Exp − Yi,Pred

Yi,Exp
× 100 (7)

5. Models development

The architecture and training hyperparameters of MLPNNs sub-
stantially impact the models’ outputs. These hyperparameters are
amenable to a wide spectrum of potential values contingent upon the
dataset’s quality and quantity, in conjunction with the complexity
inherent to the problem. As a result, the refinement of these hyper-
parameters is of paramount importance. In the present investigation,
Bayesian optimization, considering six distinct acquisition functions,
has been utilized to fine-tune the hyperparameters. This optimization
technique aids in the optimal ascertainment of crucial parameters,
containing the number of hidden layers, the number of neurons within
them, the type of activation functions, the regularization term
(Lambda), and the value of the standardized term.
In order to preserve model effectiveness while simultaneously pre-

venting an excessive increase in model complexity, the hyperparameters
under review are meticulously tuned within a rigorously defined range
of permissible values. The number of hidden layers is constrained to a
range from one to five. In an effort to manage the structural complexity
of the models, the tally of neurons present within each hidden layer is
restricted to a maximum of 20. Additionally, three activation functions
are scrutinized: the sigmoid, hyperbolic tangent (tanh), and ReLU
functions. The standardized term is dichotomous, furnishing the option
to either implement input normalization (true) or abstain from it (false).
Furthermore, the lambda hyperparameter is adjustable across a con-
tinuum that extends from 1E-07 to 1E+07. Electing values at the upper
extremity of this range promotes simplification within the model, albeit
at an increased likelihood of underfitting the dataset. Conversely, the
selection of values at the lower extremity engenders a model with
heightened complexity, which correspondingly bears an elevated risk of
over-fitting.
The dataset germane to the current investigation is bisected into two

segments: preponderance, constituting 80 %, is earmarked for training,
while the residual 20 % is sequestered for the purpose of testing.
Training data adjust neural network parameters; testing data, excluded
from training, evaluate the network’s post-training performance and
ability to generalize to new data.

This research employs MATLAB (R2021b) coding to refine the
hyperparameters of MLPNNs. Optimal hyperparameters are discerned
utilizing a five-fold cross-validation technique, which entails segment-
ing the dataset into five distinct subsets and consecutively utilizing each
as a validation set within the iterative training of a model on the residual
four subsets. A demarcated search domain establishes the constraints for
the hyperparameters, which undergo iterative refinement through
Bayesian optimization, contingent upon the model’s MSE performance
metric ascertained on the validation subset. The methodology entails
systematically training models with diverse permutations of hyper-
parameters, followed by their validation to chronicle performance
scores. The set of hyperparameters that begets the most superior cu-
mulative validation score is subsequently elected.
In the MATLAB coding framework, a constant random number

generator instantiation (rng(default)) is deployed to ensure homogene-
ity during the initialization phase across the optimization approaches.
Furthermore, invariant data points are systematically designated for the
training and testing phases in constructing disparate MLPNN frame-
works. The commitment to these methodological constants engenders
conducive environment for a fair comparative examination between the
optimized models and the acquisition functions associated with
Bayesian optimization. Fig. 6 depicts the schematic representation of the
prescribed process for designing Bayesian-based optimized MLPNN
models.

6. Results

Implementing the proposed algorithm on different acquisition
functions per 100 iterations results in an optimal specification for
MLPNNs. Table 3 shows different statistical criteria for the superior
model of each acquisition function in Bayesian optimization for testing
and training data. As seen, Bayesian optimization using the POI acqui-
sition function leads to more promising results on the testing data. Ac-
cording to the table POI-MLPNN model with MSE and MAPE, 1.93E-04
and 1.0923 % record the lowest error on the testing data. Also, the
outputs of this model on test data with R = 0.99811 and R2 = 0.99623
show high consistency to experimental observations. Models EI-MLPNN
and EIP-MLPNN go through the same optimization process during each
iteration, leading to the same results. In general, EI/EIP-MLPNN, LCB-
MLPNN, and EIPSP-MLPNN models have close performance. In terms of

Fig. 6. Flowchart of present approach for developing fine-tuned MLPNN models.
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data consistency, EI/EIP-MLPNN model (R = 0.99668 and R2 =

0.99338) is superior to LCB-MLPNN (R = 0.99529 and R2 = 0.99060)
and EIPSP-MLPNN (R = 0.99667 and R2 = 0.99335), but in terms of
errors generated by models, LCB-MLPNN model (MAPE = 1.4851 %)
and EIPSP-MLPNN (MSE = 3.328E-04) are superior to EI/EIP-MLPNN
(MSE = 3.350E-04 and MAPE = 1.5124 %). The EIPS-MLPNN Model
has the weakest performance of the developed models, and R = 0.97263
and MAPE= 4.3474 % result in the highest error and lowest consistency
on the testing data.
Optimized hyperparameters for different acquisition functions are

shown in Table 4. The results presented in Table 3 describe each model’s
best case (Rank 1). According to the table, a wide range of hidden layers
from one to five numbers can lead to optimal conditions. Also، the
number of neurons in each hidden layer can accept different values. In
the best model, POI-MLPNN, the two hidden layers with six neurons
embedded in each layer result in the best results in the testing stage. This
shows that the most complex neural network architecture does not
necessarily lead to optimal solutions but rather that optimal structural
arrangement leads to appropriate outputs. According to the table، in
most optimal states for EIPSP, EI/EPI, EIPS, and LCB acquisition func-
tions, the Tanh function acts as an activator. However، in the top three
models optimized by the POI acquisition function، the sigmoid function
plays the activation role. The standardized parameter has "true" values
in all cases of Table 4, which indicates the positive role of standardizing
inputs in the output accuracy of models. Also, in most models, the
lambda has a value smaller than 1E-04, which shows the superiority of
relatively complex models while not overfitting.
The graphical presentation provides valuable insight for a more

detailed examination of the model’s accuracy. For this purpose، Fig. 7
compares the regression graph of MLPNNs based on different acquisition
functions. According to the figure, the testing data points in the POI-
MLPNN model show greater conformity to the Y = X line, indicating

the proximity of the model outputs and laboratory observations. These
observations confirm the results seen in Table 3. Also, regarding the
training data points, POI-MLPNN and LCB-MLPNN models provide a
better performance that confirms the information presented in Table 3.
The scattering of training and testing data points in the EIPS-based
model and their high deviation from the Y = X line indicate that this
model is not performing well in the testing and training stages.
In order to focus on the deviation of the model outputs from the

observations at the testing stage, the relative errors are depicted in
Fig. 8. The margin of RE for different models is presented as follows.

• -3.29 % < REEIPSP < 1.46 %
• -3.25 % < REEI/EIP < 1.60 %
• -6.21 % < REEIPS < 7.59 %
• -3.79 % < RELCB < 3.05 %
• -2.52 % < REPOI < 2.66 %

According to Fig. 8، the EIPS acquisition function in Bayesian-based
optimization imposes a considerable relative error on the model outputs.
The POI acquisition function results in an MLPNN model where the data
points are generally closer to the zero-error line (ZEL). However, at some
data points, especially with positive RE (above ZEL), EIPSP-MLPNN and
EI/EIP-MLPNN models have less RE than the superior model (POI-
MLPNN). In POI- and EIPS-based models, more points lie below ZEL،
indicating that the models overestimate the observations. Conversely, in
LCB-, EIPSP, and EI/EIP-based models, most data points lie above the
ZEL, meaning these models underestimate the experimental data.
In order to explore regions with better and more consistent pre-

dictions, comparing violin plots of actual data and predicted data can be
helpful. Fig. 9 compares the violin plots derived from experimental data
with the outputs of optimal MLPNN models. A violin plot is a sophisti-
cated graphical tool that integrates the box plot with a kernel density

Table 3
Accuracy of the best model developed by each acquisition function of the Bayesian approach.

Data Acquisition Type MSE MAPE (%) R R2 IA

Testing
Dataset

EIPSP 3.328E-04 1.4972 0.99667 0.99335 0.99811
EI 3.350E-04 1.5124 0.99668 0.99338 0.99809
EIP 3.350E-04 1.5124 0.99668 0.99338 0.99809
EIPS 2.588E-03 4.3474 0.97263 0.94601 0.98512
LCB 4.55E-04 1.4851 0.99529 0.99060 0.99750
POI 1.93E-04 1.0923 0.99811 0.99623 0.99889

Training
Dataset

EIPSP 4.708E-04 1.5283 0.99742 0.99484 0.99858
EI 4.676E-04 1.5296 0.99743 0.99487 0.99859
EIP 4.676E-04 1.5296 0.99743 0.99487 0.99859
EIPS 3.094E-03 4.5868 0.98159 0.96352 0.99062
LCB 2.88E-04 1.3694 0.99830 0.99661 0.99915
POI 3.92E-04 1.5119 0.99770 0.99541 0.99884

Table 4
The optimized hyperparameters of the top three MLPNN models for each acquisition function of the Bayesian approach.

Acquisition Type Rank Number of Layers Number of neurons Activations Standardize Lambda

EIPSP 1 5 16-5-12-1-1 Tanh True 1.2186E-05
2 1 5 Relu True 1.8548E-03
3 4 5-1-7-18 Tanh True 3.5727E-04

EI/EPI 1 4 16-1-6-18 Tanh True 2.0043E-07
2 2 3–2 Tanh True 2.8754E-05
3 5 4-9-16-5-20 Tanh True 2.9017E-05

EIPS 1 5 9-15-19-5-6 Tanh True 2.1774E-07
2 4 15-3-12-3 Sigmoid True 2.0310E-07
3 3 9-18-3 Tanh True 2.6614E-05

LCB 1 3 8-14-20 Tanh True 5.8244E-06
2 1 15 Tanh True 2.0200E-07
3 1 17 Relu True 5.3412E-05

POI 1 2 6–6 Sigmoid True 2.0077E-07
2 1 9 Sigmoid True 1.1723E-06
3 5 15-1-3-2-19 Sigmoid True 5.0338E-07
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plot to illustrate the distribution of data and its probability density
function (PDF). This plot appears as a violin-shaped figure representing
the data distribution’s density, with the width of the plot at various
levels signifying the frequency of data occurrence. Violin plots are
particularly beneficial for analytic comparisons across multiple groups
or data sets, as they convey the intricacies of data dispersion and central
tendency metrics, providing a comprehensive visual summary of the
data set’s variability and central value comparisons. Fig. 9 shows that
the output distribution from the POI-MLPNN model is more similar to
the PDF of actual data. However, clear differences are visible in some

areas, such as 1 < DV < 1.2 mPa s. In this particular area, the distri-
bution of EI/EIP and EIPSP-based models is closer to the distribution of
empirical data.
Furthermore, comparing the results of the superior developed model

(POI-MLPNN) with experimental data and the findings of previous re-
searchers can be advantageous. Jin et al. [89] proposed a discrete model
containing ten formulas for the present data through curve fitting,
considering different mass fractions of MXene and graphene nano-
materials. These relationships exhibited high accuracy in predicting the
dynamic viscosity of nanofluids, with R2 exceeding 0.99. Table 5

Fig. 7. Regression plots of MLPNN models optimized by Bayesian approach based on different acquisition functions.
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presents the viscosity mathematical formulas. A comparison between
the POI-MLPNN model and the results of Jin et al. [89] using experi-
mental data reveals the accuracy of both models. While the model by Jin
et al. [89] is discrete and not integrated, it serves as a valuable bench-
mark. Fig. 10 illustrates this comparison, demonstrating the high accu-
racy of the current model in predicting the dynamic viscosity of
MXene/graphene-water hybrid nanofluid.
Fig. 11 illustrates the influence of input variables on the dynamic

viscosity of nanofluid, as predicted via the superior model (POI-
MLPNN). In accordance with theoretical anticipations, there is an in-
verse relationship between temperature elevation and the DV of nano-
fluids; an increase in temperature invariably leads to a decrease in DV.
This phenomenon can be attributed to the augmented kinetic energy at

elevated temperatures, which diminishes the resistance to fluid flow. As
thermal energy escalates, the nanoparticles exhibit more vigorous
Brownian motion, thereby reducing the cohesive intermolecular forces
within the base fluid and consequently lowering its viscosity. Further-
more, elevated thermal conditions mitigate the attractive forces be-
tween the particles, deterring aggregation that would otherwise
reinforce viscosity. The thermal expansion of the base fluid under heat
also contributes to a decrease in its density and an attendant decrease in
DV.
Also, Fig. 11 confirms that an augmentation in the mass fraction of

nanomaterials within a nanofluid is invariably associated with an
increment in dynamic viscosity. Enhanced particle-particle interactions
arise as a direct consequence of increased nanomaterial concentration.
Such inter-particulate collisions contribute to a greater resistance to
shearing forces within the fluid matrix, culminating in a heightened
energy dissipation during flow. This necessitates an elevated input force
to sustain the fluid movement, rendering the nanofluid more viscous.
The aggregation of nanoparticles, prevalent at elevated concentrations,
further compounds this rise in viscosity. This trend is consistent with
established theoretical frameworks about the behavior of colloidal
systems.
Moreover, Fig. 11 elucidates that an escalated proportion of MXenes

within an MXene/graphene-water hybrid nanofluid correlates with a
diminished DV. The distinct structural and chemical-physical charac-
teristics of MXenes can explain the decrement in DV attributed to an
increased MXene-to-graphene ratio. MXenes typically possess a more
extended aspect ratio and exhibit flatter morphologies than graphene,
potentially enabling more homogenous dispersion and diminishing
rheological resistance - a contrast to the agglomeration tendency of
graphene. The surface of MXenes, characterized by their hydrophilicity,
favors enhanced compatibility with polar solvents, promoting colloidal
stability and leading to a less viscous nanofluid, notwithstanding the
augmented nanomaterial content. This is because MXenes facilitate the
prevention of nanoparticle clustering that would otherwise result in
increased viscosity.

7. Conclusion

The pivotal role of dynamic viscosity as a fundamental thermo-
physical property in nanofluids composed of MXene and graphene-
based nano-sized materials, particularly for use in photovoltaic/ther-
mal solar systems, has spurred the scientific community to focus on
creating precise and reliable predictive models. This study deployed
models based on ANN to forecast dynamic viscosity precisely. The effi-
cacy of MLP-type ANN models was enhanced by integrating Bayesian
optimization. This technique was instrumental in fine-tuning the
architectural and training hyperparameters of the ANN, which encom-
pass the number of hidden layers, neurons within those layers, types of
activation functions, standardized parameters, and regularization terms.
The optimization of MLPNNmodels has resulted in efficient and cost-

effective alternatives to traditional methods, markedly decreasing the
expenses linked to both experimental analyses and extensive computa-
tional simulations. The key findings from this research are summarized
as follows.

• Optimized hyperparameters varied widely across different acquisi-
tion functions, demonstrating the flexibility and adaptability of the
Bayesian optimization process in finding optimal configurations.

• Developed models showed strong performance metrics, with R and
R2 values above 0.99 for most acquisition functions, indicating high
model accuracy and reliability.

• The POI acquisition function in Bayesian optimization yielded the
best results in the testing phase. The POI-MLPNN model registered
the slightest error with a MAPE of 1.0923 %. Outputs reflected high
consistency with an R-value of 0.99811.

Fig. 8. The relative error of outputs in the testing phase for various
optimal models.

Fig. 9. Comparing violin graphs of optimized MLPNN models in the
testing phase.

Table 5
Viscosity predictive formulas developed by Jin et al. [89].

Nanofluid Viscosity formula

MF (wt%) MXene ratio (%)

0 0 1.054× e− T/37.577 + 0.362
0.1 0 1.033× e− T/36.023 + 0.426
0.5 0 1.033× e− T/36.023 + 0.496
1 0 1.047× e− T/34.849 + 0.585
1.5 0 1.062× e− T/33.767 + 0.693
2 0 1.112× e− T/33.338 + 0.800
2 10 0.999× e− T/38.265 + 0.728
2 25 0.934× e− T/42.392 + 0.661
2 50 0.901× e− T/40.549 + 0.595
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• The EI-MLPNN and EIP-MLPNN models showed similar performance
due to identical optimization processes, achieving R = 0.99668 and
R2 = 0.99338.

• EI/EIP-MLPNN, LCB-MLPNN, and EIPSP-MLPNN models had close
performance. In terms of consistency, EI/EIP-MLPNN model (R =

0.99668) is superior to LCB-MLPNN (R = 0.99529) and EIPSP-
MLPNN (R = 0.99667).

• In terms of the error metrics, the LCB-MLPNNmodel, with a MAPE of
1.4851 %, and the EIPSP-MLPNN model, with an MSE of 3.328E-04,

outperformed the EI/EIP-MLPNN models, which had a slightly
higher MSE of 3.350E-04 and a MAPE of 1.5124 %.

• The RE analysis showed that the POI-MLPNN model maintained RE
within a narrower range (− 2.52 %–2.66 %), confirming its robust-
ness compared to other models.

• The optimal POI-MLPNN model used two hidden layers with six
neurons each, indicating that a more complex neural network ar-
chitecture is not necessarily superior but rather an optimal structural
arrangement is key.

Fig. 10. Comparing the outputs of the POI-MLPNN model with the curve fitting results presented by Jin et al. [89] and the corresponding experimental data.

Fig. 11. Influence of inputs on the DV predicted by the best model (POI-MLPNN).
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• The Tanh activator was prevalent in optimal states for EIPSP, EI/EPI,
EIPS, and LCB acquisition functions. Conversely, the top three POI-
optimized models predominantly utilized the sigmoid activation
function.

• The consistent "true" value for the standardization parameter across
all models highlights the critical role of input standardization in
enhancing model performance.

• The study found that lambda values smaller than 1E-04 indicate that
relatively complex models could be effective without overfitting,
balancing complexity and generalization.

While the study effectively demonstrates the efficacy of MLPNN
models enhanced by Bayesian optimization for predicting nanofluid
viscosity, it has limitations. This research focuses on MXene and
graphene-based nanofluids, which restricts generalizability, and the
dataset may not cover all experimental conditions and inputs involved in
real-world applications. This is due to the limited availability of exper-
imental datasets. To address these limitations, future research should
extend laboratory studies beyond the current data and conditions to
generate sufficient data for the development of machine learning-based
models. Additionally, integrating advanced machine learning tech-
niques, such as deep learning with Bayesian optimization, can improve
predictive accuracy.

Nomenclature

DV Dynamic viscosity (mPa⋅s)
IA Willmott’s index of agreement (− )
MF Nanomaterials mass fraction (wt%)
MXene ratio Ratio of MXene weight to total nanomaterials weight (− )
R Correlation coefficient (− )
R2 Coefficient of determination (− )
T Temperature (◦C)
x Variable (− )
Subscripts
max Maximum
min Minimum
norm Normal
Abbreviations
ABR AdaBoost regression
AI Artificial intelligence
ANFIS Adaptive neuro-fuzzy inference system
ANN Artificial Neural Network
BRT Boosted regression trees
EG Ethylene glycol
EI Expected improvement
EIP Expected improvement plus
EIPS Expected improvement per second
EIPSP Expected improvement per second plus
EKF Extended Kalman filter
ETR Extra tree regression
GNM Graphene-based nanomaterial
GPR Gaussian process regression
IQR Interquartile range
KELM Kernel extreme learning machine
KNN K-nearest neighbors
KCC Kendall correlation coefficient
LCB Lower confidence bound
LSSVM Least-squares support vector machine
LWLR Locally weighted linear regression
MAPE Mean absolute percentage error
MARS Multivariate adaptive regression spline
MGGP Multigene genetic programming
ML Machine learning
MLPNN Multi-layer perceptron neural network
MSE Mean squared error
MWCNT Multi-walled carbon nanotube
NM Nanomaterial
PDF Probability density function
POI Probability of improvement
PTC Photo-thermal conversion
PVT Photovoltaic/thermal
RBFNN Radial basis function neural network

(continued on next column)

(continued )

RE Relative error
RF Random forest
RNG Random number generator
SVM Support vector machines
TC Thermal conductivity
TPP Thermophysical property
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