

Journal of Magnetism and Magnetic Materials

Volume 586, 15 November 2023, 171175

Magnetohydrodynamic convection-entropy generation of a non-Newtonian nanofluid in a 3D chamber filled with a porous medium

Sameh E. Ahmed ^{a b}, Aissa Abderrahmane ^c, As'ad Alizadeh ^d, Maria Jade Catalan Opulencia ^e, Obai Younis ^f, Raad Z. Homod ^g, Kamel Guedri ^h, Hussein Zekri ^{i j}, Davood Toghraie ^k 🔉 🖾

Show more V

+ Add to Mendeley < Share

JJ Cite

https://doi.org/10.1016/j.jmmm.2023.171175 7

Get rights and content a

Highlights

- This paper presents numerical results of the buoyancy-driven flow of a <u>nanofluid</u> in a cavity in the presence of <u>magnetic field</u>.
- To encounter the non-Newtonian layer influence, the power-law model is considered.
- · The solution of the governing equations is obtained by the Galerkin FEM method.
- The effects of geometrical parameters are discussed and illustrated.
- By simultaneously using non-Newtonian <u>nanofluid</u> and porous media, the heat exchange is positively affected.

Abstract

Magnetohydrodynamic (MHD) mixed convection in a 3D (three dimensional) lid-driven cavity loaded with a power-law nanofluid is examined. The bottom wavy wall is maintained at a hot temperature, while the upper lid is at a uniformly cold temperature. The vertical walls are kept in adiabatic conditions. The steady and three-dimensional flow of nanofluids is quantitatively studied utilizing thermophysical properties and the Galerkin Finite Element Method (GFEM). The findings were shown for a variety of Grashof numbers (Gr=10³-10⁵), Hartmann numbers (Ha=0–20), Reynolds numbers (Re=10-500), power-law indexes (n=0.8,1,1.6), and undulation numbers (N=1-4). The influence of the various parameters on flow, heat transfer, and entropy generation is illustrated by the streamlines, isotherms, and isentropic contours. Higher Re, γ , N, φ , and lower Ha enhance the heat transfer. Entropy generation is mostly due to heat transfer but also fluid-friction and magneto effects contribute. Also, the increase in Re from 50 to 500 gives an enhancement in Nu_{av} up to 87.5 %. Furthermore, the increase in power-law index (n) from 0.8 to 1 gives a reduction in Nusselt number up to 10.58 %.