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Abstract In this study, the thermal conductivity (knf) of ZnO -TiO2 (50 %–50 %)/ Ethylene Glycol

hybrid nanofluid using Artificial Neural Networks (ANNs) was predicted. The nanofluid was pre-

pared at different volume fractions (u) of nanoparticles (u = 0.001 to 0.035) and temperatures
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(T = 25 to 50 �C). In this study, an algorithm is presented to find the best neuron number in the

hidden layer. Also, a surface fitting method has been applied to predict the knf of nanofluid. Finally,

the correlation coefficients, performances, and Maximum Absolute Error (MAE) for both methods

have been presented and compared. It could be understood that the ANN method had a better abil-

ity in predicting the knf of nanofluid compared to the fitting method. This method not only showed

better performance but also reached a better MAE and correlation coefficient.

� 2023 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open

access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Nanofluids have emerged as a new approach in the field of

thermal engineering. Nanofluids consist of a suspension of
solid nanoparticles or fibers less than 100 nm in a base fluid.
The good dispersion of solid particles in a liquid is commonly

known as a colloidal suspension. The study of heat transfer in
solids dispersed in liquids has been carried out in recent years.
The main obstacle to using microparticles is increased corro-

sion and abrasion in engineering systems. With the advent of
nanotechnology, the use of nanoparticles led to the creation
of a stable colloidal system, later known as nanofluids. Unlike
micro-sized suspensions, nanoparticles can form a high-

strength system used in systems where a fluid is used to transfer
energy. Today, most equation optimizations are performed
using ANNs, as this method optimizes your outputs with great

accuracy, and you can then enter into other studies such as
simulation. Optimization is, of course, an ANN feature. In
recent years, ANNs have found many applications in various

engineering sciences. The use of ANNs in different branches
of engineering is increasing day by day and covers different
ranges, so engineers must know how it works and how to

use it [1,2]. Kumar et al. [3] predicted the knf of Cu-Zn/ H2O
hybrid Newtonian nanofluids using ANNs and experimental
methods. Esfe [4] designed an ANN to model the knf of ethy-
lene glycol– H2O / TiO2 nanofluids. He showed that ANNs are

very powerful in modeling the knf of nanofluids. Esfe et al. [5]
estimated the knf of SWCNT–Al2O3/ ethylene glycol nanofluid
using correlation and ANN methods. Esfe et al. [6] predicted

the knf of MWCNT/ Ethylene Glycol nanofluid using ANN.
Alrashed et al. [7] investigated the properties of carbon-
based data using experimental and ANN methods. Mohamed

and Habashy [8] predicted the knf modeling of Propylene
Glycol-based nanofluids using the ANN method. Their results
demonstrate the ability of the ANN model in the nanofluid

field. Aghayari et al. [9] studied the electrical conductivity of
CuO/Glycerol nanofluids with the ANN method. Karimipour
et al. [10] obtained a correlation for estimating the knf and vis-
cosity of CuO/liquid paraffin nanofluid using ANN. Eshgarf

et al. [11] predicted the rheological behavior of MWCNTs–
SiO2/ Ethylene Glycol–H2O nanofluid using ANNs. Esfe
et al. [12] modeled the knf of DWCNT–SiO2/Ethylene Glycol

nanofluid using ANNs. By comparing the experimental data
for knf with ANN data, they showed the high capacity and
accuracy of ANN in knf predicting. Zendehboudi and Saidur

[13] modeled the effective knf of 26 nanofluids using the
MLP-ANN approach. Amani et al. [14] predicted the proper-
ties of the aqueous solution of TiO2/CMC- H2O nanofluid
using ANN. Rahman and Zhang [15] studied the heat transfer

coefficient of the thermo-acoustic heat exchanger by ANNs.
Longo et al. [16] modeled the viscosity of the H2O / KCOOH
mixture by the ANNs. Zhi et al. [17] studied the viscosity of

refrigerants by using the ANNs. Gülüm et al. [18] studied
the viscosity of 6 pure refrigerants by the ANNs and regression
models. Bahrami et al. [19] developed an ANN method.

Ahmadi et al. [20] studied the viscosity of Ag/H2O nanofluids
using ANNs. Mohamadian et al. [21] studied the viscosity of
Ag/ H2O nanofluids. using the ANN. Also, Cong et al.
[22,23] investigated different aspect of nanofluids in different

situations. Another aspects of nanofluids using ANN were
done by Ruhani et al. [24] from different aspects.

In this study, the knf- of ZnO -TiO2 (50 %–50 %)/ Ethylene

Glycol hybrid nanofluid using ANNs was predicted. A surface
fitting method was applied to predict the knf of hybrid nano-
fluid. Finally, the correlation coefficients, performances, and

MAEs for both methods have been presented and compared.
The ANN is a simple method that prevents the extraction of
experimental data and reduces cost by predicting the behavior
of nanofluids. So using this simple method to predict the

behavior of the nanofluid is the nobility of this work.
A simple method to predict the knf of ZnO -TiO2 (50 %–

50 %)/ Ethylene Glycol hybrid nanofluid was used in this

work. This method is useful for a small number of data points
with a simple behavior. The model of this nanofluid has a sim-
ple behavior, and other machine learning methods such as

ANFIS/Fuzzy logic may increase the uncertainty of the artifi-
cial model and are suitable for complicated models. For
instance, in the fuzzy logic method selecting suitable member-

ship functions and the number of them should be selected
appropriately to obtain acceptable results. In addition, in this
paper, an inner iteration method was used, which runs the pro-
gram several times, and for each neuron number, the average

value of running the program is shown. This inner iteration
increases the reliability of results. In the next papers, we plan
to use and compare the results of this method with other

machine learning methods in predicting the knf of nanofluid.
None of them is focused on the knf of ZnO –TiO2 / Ethylene
Glycol hybrid nanofluid in all the mentioned researches. As

this nanofluid is used in many engineering applications, it is
important to design a specific ANN for this nanofluid and pre-
dict the behavior rapidly. This study aims to design a suitable

ANN to predict the behavior of nanofluids. By using ANNs,
the lab cost decreases, but the required time to obtain knf is
decreased.

2. Experimental results

A two-stage method was used to produce the nanofluid. To
produce nanofluids in a different u, the mass values needed

to produce arbitrary u are calculated. The mixture was sub-

http://creativecommons.org/licenses/by/4.0/


Evaluation of the effects of the presence of ZnO -TiO2 3
jected to ultrasonic waves for 4, 8, and 12 h. The nanofluid had
good stability, and no sedimentation was observed. Tables 1
and 2 show the properties of the ZnO and TiO2 nanoparticles.

Table 3 also shows the chemical properties of ethylene glycol
[25].

Fig. 1and Fig. 2 show the variation of the knf versus u and

temperature (T) [25]. At T = 25 �C, at u ¼ 0.001, the knf
Table 1 The properties of the ZnO[25].

Properties

Molecular formula ZnO

Nanoparticle shape Spherical

Size 35� 45 nm

Purity 99%

Appearance White

Density 5:606g=cm3

Specific Area 20� 60 m2=g

Table 2 The properties of the TiO2 [25].

Properties

Molecular formula TiO2

Nanoparticle shape Spherical

Size 30 nm

Purity 99%

Appearance White

Density 0:46 g=cm3

Specific Area 10� 45 m2=g

Table 3 Properties of the ethylene glycol [25].

Properties Value

Combustion temperature �C 410

Saturation concentration g=m3
� �

15

Melting point �C �13

Molar mass g=molð Þ 62:07

Density g=cm3
� �

1:114

pH value 6:5� 7

Boiling point �C 197:6

Steam pressure �C 410

Fig. 1 Variation of the knf versus temperature at different u [25].

Fig. 2 Variation of the knf versus u at different temperatures

[25].
increased by 0.4 % compared to the thermal conductivity of
base kbf at the same temperature. At u ¼ 0.003, the knf
increases by 2 %, and at u ¼ 0.005, the knf increases by
2.8 % relative to the base fluid. At u ¼ 0.01, the knf increased
by 5.6 %, and at u ¼ 0.015, the knf increased by 9.2 % relative

to the kbf at T = 25 �C. Similarly, at u ¼ 0.02 and u ¼ 0.025,
0.03 and 0.035, the knf increased by 12.45, 13.3 and 15.3 and
18.5 %, respectively. According to the data presented at

T = 25 �C, we find that by increasing u from 0.001 to
0.035, the knf increases from 0.4 to 18.5 %, and the highest

knf is increased. There is the highest knf in the highest u. At
u ¼ 0.015, we had the highest slope increase in knf (3.4 %).
At T = 30 �C, the knf increased from 0.8 to 20.1 % relative
to the base fluid by increasing the u from 0.001 to 0.035.

The highest knf is related to the highest u at this temperature.
The obtained data also show that at T = 30 �C and u ¼ 0.035,
the knf increased by about 22.4 % when the base fluid was at

T = 25 �C. Also, at T = 35 �C, the knf increases by 1.2 % with
an increase of u ¼ 0.001 at the same temperature. The higher u
at a constant temperature, the higher the knf increases. The
highest percentage of increase in knf was u ¼ 0.035, in which

the knf increased by about 20.7 % relative to the kbf at
T = 35 �C. At T = 40 �C, the knf increased by 1.5 % at t
u ¼ 0.001, and by increasing the u to 0.035, the knf increased

to 24.2 % relative to the base fluid at the same temperature.
The data also show that if the base fluid temperature increases
from T = 25 �C to T = 40 �C, and at u ¼ 0.035, the knf



Table 4 The sorted performances.

Neuron
Number

All Train Validation Test

7 2.2E-06 1.33E-06 2.1E-06 6.38E-06

9 2.25E-06 1.25E-06 2.09E-06 7.25E-06

8 2.31E-06 1.62E-06 1.23E-06 7.79E-06

10 2.81E-06 9.34E-07 3.41E-06 1.08E-05

6 2.85E-06 1.66E-06 3.78E-06 5.91E-06

12 2.9E-06 1.1E-06 3.57E-06 1.02E-05

13 3.05E-06 1.61E-06 2.8E-06 1.05E-05

11 3.78E-06 2.43E-06 3.13E-06 1.13E-05

15 3.89E-06 1.85E-06 3.9E-06 1.37E-05

16 4.38E-06 2.36E-06 3.13E-06 1.69E-05

14 4.74E-06 2.2E-06 6.12E-06 1.36E-05

18 5.05E-06 1.41E-06 6.11E-06 2.09E-05

21 5.93E-06 1.41E-06 6.26E-06 2.83E-05

20 6.44E-06 2.09E-06 6.77E-06 2.76E-05

22 6.62E-06 1.73E-06 5.76E-06 3.37E-05

19 7.31E-06 3.94E-06 7.52E-06 2.26E-05

25 7.6E-06 1.61E-06 1.06E-05 3.08E-05

17 7.94E-06 1.83E-06 1.24E-05 2.82E-05

24 8.81E-06 3.03E-06 1.27E-05 2.81E-05

23 9.14E-06 3.01E-06 1.17E-05 3.36E-05

27 1.03E-05 1.92E-06 1.56E-05 4.09E-05

28 1.09E-05 1.11E-06 1.83E-05 4.38E-05

26 1.15E-05 3.06E-06 1.1E-05 5.6E-05

30 1.31E-05 1.49E-06 1.51E-05 6.89E-05

33 1.72E-05 1.09E-06 2.41E-05 8.44E-05

34 1.86E-05 8.77E-07 2.48E-05 9.64E-05

35 2.09E-05 1.33E-06 2.81E-05 0.000106

31 2.28E-05 6.53E-06 2.61E-05 9.77E-05

32 2.37E-05 1.28E-06 3.59E-05 0.000111

29 2.55E-05 3.6E-06 3.32E-05 0.000121

39 3.07E-05 6.37E-07 4.6E-05 0.000151

36 3.24E-05 5.19E-06 3.62E-05 0.000164

38 4.31E-05 4.67E-06 5.92E-05 0.000204

37 4.48E-05 3.14E-06 4.88E-05 0.000254

40 4.91E-05 3.72E-06 5.22E-05 0.00028

43 4.92E-05 1.53E-06 7.94E-05 0.000226

42 5.07E-05 4.63E-06 6.15E-05 0.000265

41 5.31E-05 3.9E-06 9.14E-05 0.000216

44 5.39E-05 5.34E-07 6.72E-05 0.000303

Table 5 The correlation coefficients for each neuron number.

Neuron Number R R1 R2 R3

7 0.996408 0.998003 0.992682 0.991524

9 0.996342 0.998112 0.993321 0.993741

8 0.996258 0.997457 0.995205 0.988033

10 0.995372 0.998445 0.990884 0.98796

6 0.99565 0.997548 0.995634 0.994005

12 0.995378 0.998478 0.988871 0.986751

13 0.994914 0.997431 0.991467 0.983863

11 0.994042 0.996348 0.99051 0.985528

15 0.993712 0.997173 0.989468 0.981872

16 0.992675 0.9963 0.990286 0.977253

14 0.992254 0.996272 0.987153 0.979813

18 0.991768 0.997862 0.974766 0.970645

21 0.990939 0.997799 0.984474 0.97453

20 0.98983 0.996561 0.98447 0.973256

22 0.989483 0.997365 0.983885 0.957353

19 0.988108 0.994202 0.962737 0.975589

25 0.987647 0.997675 0.973996 0.9556

17 0.987228 0.997373 0.97737 0.968359

24 0.986141 0.995734 0.972567 0.955081

23 0.985377 0.995455 0.962215 0.966306

27 0.982889 0.997219 0.944049 0.946039

28 0.983129 0.998293 0.945474 0.955797

26 0.981434 0.995218 0.973833 0.938514

30 0.979061 0.997615 0.967882 0.916838

33 0.972656 0.998428 0.918362 0.923039

34 0.97146 0.998673 0.93972 0.884858

35 0.967486 0.997972 0.886178 0.844234

31 0.968292 0.990142 0.951656 0.867087

32 0.964415 0.998207 0.891629 0.891489

29 0.962931 0.995003 0.919799 0.869147

39 0.951447 0.998996 0.90129 0.856993

36 0.951317 0.991509 0.902888 0.861279

38 0.933728 0.991175 0.854761 0.863626

37 0.935564 0.994833 0.861104 0.827856

40 0.930498 0.993784 0.882899 0.746966

43 0.932363 0.997679 0.83899 0.820589

42 0.936206 0.994012 0.881158 0.869328

41 0.921527 0.994123 0.81245 0.822816

44 0.929825 0.999186 0.881939 0.748685
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increases by 29.72 %. At T = 45 �C and T = 50 �C, the knf
also increases with increasing u. Also, increasing the tempera-

ture in each u increases the knf. At T = 50 �C, the knf increased
by about 40.1 % over ethylene glycol at T = 25 �C, indicating
a significant contribution of increasing temperature and u to

increase the knf. The higher the u, the more particles are joined
together and form larger clusters, which increases the knf due
to the faster movement of heat through the paths of these clus-

ters. Increasing the temperature also increases the Brownian
motion and more collisions of the fluid molecules and the
molecules of the fluid and the particles and the molecules of
each other, increasing the knf. With increasing temperature,

the mixing in the layers increases. By raising the temperature,
the effects of the surfactant disappear, resulting in a decrease
in the knf [25].

Considering Figs. 1 and 2, it can be seen that knf has a
direct relationship to temperature. In addition, as the u
increases, the knf increases. Therefore, the best knf occurs by

higher temperature and higher u. [25].
3. ANN method

3.1. Fundamental of ANN

ANNs are intelligent model-free dynamic systems based on

experimental data that do not require receivers and process
the knowledge or law behind the data into the network struc-
ture by processing the experimental data. The process of data

is presented in Eq. (1),

Ti ¼ f
XN
j¼1

wijxj þ bi

 !
ð1Þ

here,Ti, f, n,wij,xj, and bi represent the output, the activa-

tion function, the number of experimental data, the weight
matrix, the input, and the bias, respectively. In the current

work, the number of the data point is 60 and 70 percent of data
is considered for the train, 15 % for validation and the rest of
the data is for the test. The train data generates the weight and
biases of the matrix, the validation data adjust and modify the
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weights and biases during the learning process. Finally, the test
data is used to determine the performance of the network. The
ANN performance is considered as Mean Square Error (MSE)

which is defined in Eq. (2),

MSE ¼ 1

n

Xn
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ti � bTi

� �2r
ð2Þ

here, n represent the number of data points (60), Tk repre-

sent the experimental target and bTi represent the output of
ANN. The learning algorithm is Levenberg Marquardt or
the Damped Least square method. In this study, the activation

function for the last layer is the pure line and for other layers is
tan sig(x). The tangent sigmoid function is shown in Eq.3,

tansig xð Þ ¼ 2

1þ e�2x
� 1 ð3Þ

In designing the ANN, it is important to avoid overfitting.

In an ANN with overfitting, the network can predict data
points in a very limited range, or it only can predict the train
data. But it fails in the test data points which are introduced
to the ANN for the first time. The overtrained network can’t

follow the trend of data. We used the designed ANN outside
of this range and compared the results of ANN to them. But
as we had few data points outside of the mentioned ranges,

we didn’t discuss these extra points, and these few points are
only used to be ensuring that the designed ANN has not any
overfitting and can follow the trend of data.

In the current study, as the ANN should predict the knf,
only one neuron should be in the output layer. But in the hid-
den layer, the number of neurons can be different. The neuron

numbers have an important effect on the predicted results. The
bounds of neuron numbers are calculated considering Eq. (4),

Bounds :
LB ¼ 2 ni þ noð Þ
UB ¼ N � ni þ noð Þ � noð Þ= ni þ no þ 1ð Þ

�
ð4Þ

In the above equation, ni represent the number of input

variables (2) and no represent the number of outputs parame-
ters (1), and N represent the number of data samples. The
Fig. 3 Train data o
lower and upper bounds of this study are 6 and 44, respec-
tively. As the weights and biases during each simulation are
different, the ANN may have different results for a specific

neuron number. An internal loop is designed to improve the
reliability of performance for a specific neuron number. This
loop simulates the network several times (in this study, it sim-

ulates for 15 times), and the mean statistical outputs are con-
sidered the result of that neuron number. The algorithm to
determine the best neuron number in the hidden layer is pre-

sented as follows:

3.2. The best neuron number algorithm

As mentioned before, in this study, u and temperature consid-
ered as input parameters, no the number of outputs (knf) ns is
considered as the number of experimental data (60) from
Ref. [25]. Undeniably, knf is affected by other factors. But,

these are the most important factor, and knf is affected more
by these two items (knf and u). In Table 4, the performances
are sorted and presented for train validation and test data

points.
In Table 4, the performances for train, validation, test, and

all outputs have been presented. Results show that the best

ANN has 7 neuron numbers in the hidden layer and the best
performance represents the ANN with 7 neurons. Although
the results of some other neuron numbers are similar to this
ANN, the criteria of selecting the best ANN is based on the

best performances for tests and overall outputs. The ANN
with 7 neurons has the best these two performances (test and
overall). The correlation coefficients of each neuron number

have been presented In Table 5. The correlation coefficient
can be calculated using Eq. (5),

qU;V ¼ E U� lUð Þ V� lVð Þ½ �
rUrY

ð5Þ

here,U, V represent the Targets and predicted values respec-

tively, lU and lV represent the mean value of U andV. The
standard deviations U;V represent rU; rV respectively and q
utputs of ANN.



Fig. 4 Validation data outputs of ANN.
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represent the correlation coefficient between the experimental
and predicted values. In Table 5, R;R1;R2;R3 represent all
data, train data, validation data, and test data correlation

coefficients.
The represented results in Tables 4 and 5 show that the

ANN with 7 neuron numbers in the hidden layer has the best

performance and has the best correlation coefficient. Consider-
ing Tables 4 and 5, different neuron numbers are applied, and
based on the results, the optimum neuron number is 7. The

neuron numbers in Table 4 are sorted based on the overall per-
formance. The results show that the best number of neurons is
7, although some neuron numbers have acceptable perfor-
mance. In addition, the ANN results of Table 4 are the mean

value of several times of running the program for each neuron
number to increase the reliability of results (inner iteration
number is 20). Therefore, these results for each neuron number

are obtained by running the program after 20 times. In this
Fig. 5 Test data o
study, u and temperature are considered inputs, and knf is
considered a target. In this study, u and temperature is input
parameters and knf is used as a target parameter. The train,

validation, and test outputs are presented in Figs. 3 to 6. In

train data, the MSE is 1.3324e-06, and MAE is 0.0024. In
the validation data, the MSE is 2.0966e-06 and MAE is
0.0023. In test data, the MSE is 6.3805e-06 and MAE is
0.0039. In all data points, MSE is 2.2043e-06 and MAE is

0.0039.

4. Fitting method

In a different method, a fitting method is used to predict the
knf of this hybrid nanofluid. A third-order function is used
for u and a first-order function is used for the temperature

to predict knf. The higher-order function for the temperature
doesn’t improve the performance of the fitting method. Each
utputs of ANN.



Fig. 6 All data outputs of ANN.

Table 6 The values of fitted surface coefficients.

P00 P10 P01 P20 P11 P30 P21

0:229025 0:013641 0:000776 �0:004636 0:000259 0:000390 0:000044
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dataset has its specifications, and the fitted functions cannot be
extended to all data set. For this study, we first tried higher

orders for the fitting function, but there was not a significant
difference between these orders. In addition, higher orders
may fluctuate outside the specified boundaries and may not

be used outside these boundaries. In other words, lower orders
are better, especially when we want to consider extrapolation
and predict the behavior of nanofluids out of these ranges.

The fitted function is presented in Eq. (6),
Fig. 7 The fitted surface on th
Fit function x; yð Þ ¼ P00 þ P10 � x þ P01 � y þ P20

� x2 þ P11 � x � y þ P30 � x3

þ P21 � x2 � y ð6Þ
In the presented function, x and y represent u and the tem-

perature, respectively. The values of fitted surface coefficients
are reported in Table 6 and represented in Fig. 7.

This surface depicts a better overview of the behavior of

nanofluids. It can be seen that knf has a direct relationship to
e experimental data points.



Fig. 8 The experimental, fitting, and ANN values.

Fig. 9 The value of AE for ANN and fitting method.

8 A. Alizadeh et al.
temperature and u. The maximum knf occurs in the highest val-
ues of temperature andu. In Fig. 8, the experimental, fitting val-

ues, and ANN outputs are presented. It is found that both the
ANN and fittingmethod have acceptable accuracy in predicting
the knf based on the temperature andu. It can be seen that ANN

and fitting methods are near the experimental data points, and
both these methods are accurate enough to predict knf.

In Fig. 9, the value of absolute error (AE) for both the

ANN and fitting method is presented. We assumed that the
experimental data are our reference values; however, the error
of extracting the experimental data may be more than 0.003,
and we tried to predict these reference values.
The difference between the experimental data points and
the predicted values is defined as an error. The dimension of

error is like knf (W=mK). Considering Fig. 9, the fitting method
has bigger AE values compared to the ANN method.
Although the scale of errors is very small, the ANN, with less

amount of AE, can predict the behavior of this nanofluid bet-
ter than the bonding method. In other words, the output (knf)
has a direct relationship to the both temperature and u. So, as
the magnitudes of these values are increasing, the effect of
them on the output also increases and the error also increases.
In Table 7, some statistical data including MAE, MSE, and
correlation coefficient for ANN and fitting methods are pre-



Table 7 Statistical parameters.

ANN Fitting

MAE 0:0039 0:0056

MSE 2:20E� 06 4:08E� 06

Correlation coefficient 0:996408 0:996217
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sented. The results of Table 7 show that the ANN method has

better values in all three presented measures.

5. Conclusion

In this study, we predicted the knf of a hybrid nanofluid using
ANNs. The nanofluid was prepared by dispersing ZnO -TiO2

nanoparticles in ethylene glycol. In addition, u has a direct

effect on knf. In other words, to improve knf, temperature
and u should be increased. Regarding the ANN outputs, it
can be understood that the ANN method has a better ability

in predicting the behavior of nanofluid compared to the fitting
method. The strength of this method is its simplicity and accu-
racy in predicting data points. But its performance outside the

trained range should be evaluated in some researches. Like
many ANNs, these networks are valid inside the trained inter-
vals, and the accuracy and performances cannot be guaranteed
outside these ranges. The ANN method not only showed bet-

ter performance but also reached a better MAE and correla-
tion coefficient. Finally, as reported in this article, the output
variables (knf values) can be continuous instead of discretized.

In continuous variables, the Machine Learning (ML) algo-
rithms usually implemented are ML regressions instead of con-
ventional ML. Therefore, using sparse and non-sparse ML

regressions such as ANN regression can be easily implemented,
with continuous outputs predictions. All of them can be imple-
mented with accessible user-interface libraries in Phyton,

MatLab, etc.

Declaration of Competing Interest

The authors declare that they have no known competing
financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

References

[1] B. Ruhani et al., Statistical modeling and investigation of

thermal characteristics of a new nanofluid containing cerium

oxide powde, Heliyon 8 (11) (2022) 11373.

[2] W. He et al, Using of artificial neural networks (ANNs) to

predict the thermal conductivity of zinc oxide–silver (50%–

50%)/water hybrid Newtonian nanofluid, Int Commun Heat

Mass Transf. 116 (2020) 104645.

[3] S.K. Mechiri, V. Vasu, S. Babu, Thermal conductivity of Cu-Zn

Hybrid Newtonian Nanofluids: Experimental Data and

Modeling using Neural Network, Procedia Eng. 127 (2015)

561–567.

[4] M.H. Esfe, Designing an ANN using radial basis function

(RBF-ANN) to model thermal conductivity of ethylene glycol–

water-based TiO2 nanofluids, J. Therm. Anal. Calorim. 127

(2017) 2125.
[5] M.H. Esfe, M. Rejvani, R. Karimpour, A.A. Abbasian Arani,

Estimation of thermal conductivity of ethylene glycol-based

nanofluid with hybrid suspensions of SWCNT–Al2O3

nanoparticles by correlation and ANN methods using

experimental data, J. Therm. Anal. Calorim. 128 (2017) 1359.

[6] M. Hemmat Esfe, S. Wongwises, M. Rejvani, Prediction of

thermal conductivity of carbon nanotube-EG nanofluid using

experimental data by ANN, Curr. Nanosci., 13(3) 2017, 324-329

(6).

[7] A.A. Alrashed, M.S. Gharibdousti, M. Goodarzi, L.R. de

Oliveira, M.R. Safaei, E.P. Bandarra Filho, Effects on

thermophysical properties of carbon based nanofluids:

Experimental data, modeling using regression, ANFIS and

ANN, Int. J. Heat Mass Transf. 125 (2018) 920–932.

[8] R. Mohamed, D. Habashy, Thermal conductivity modeling of

propylene glycol - based nanofluid using ANN, J. Adv. Phys. 14

(1) (2018) 5281–5291.

[9] R. Aghayari, H. Maddah, M.H. Ahmadi, W.-M. Yan, N.

Ghasemi, Measurement and ANN modeling of electrical

conductivity of CuO/Glycerol nanofluids at various thermal

and concentration conditions, Energies 11 (2018) 1190.

[10] A. Karimipour, S. Ghasemi, M.H.K. Darvanjooghi, A.

Abdollahi, A new correlation for estimating the thermal

conductivity and dynamic viscosity of CuO/liquid paraffin

nanofluid using neural network method, Int. Commun. Heat

Mass Transfer 92 (2018) 90–99.

[11] N.S. Eshgarf, Mohammad Hemmat Esfe, Farhad Izadi, Masoud

Afrand, Prediction of rheological behavior of MWCNTs–SiO2/

EG–water non-Newtonian hybrid nanofluid by designing new

correlations and optimal ANNs, J. Therm. Anal. Calorim. 132

(2018) 1029.

[12] M. Hemmat Esfe, A.A. Abbasian Arani, R. Shafiei Badi, M.

Rejvani, ANN modeling, cost performance and sensitivity

analyzing of thermal conductivity of DWCNT–SiO2/EG

hybrid nanofluid for higher heat transfer, J. Therm. Anal.

Calorim. 131 (2018) 2381.

[13] A. Zendehboudi, R. Saidur, A reliable model to estimate the

effective thermal conductivity of nanofluids, Heat Mass Transf.

55 (2019) 397.

[14] M. Amani, P. Amani, M. Bahiraei, S. Wongwises, Prediction of

hydrothermal behavior of a non-Newtonian nanofluid in a

square channel by modeling of thermophysical properties using

neural network, J. Therm. Anal. Calorim. 135 (2019) 901.

[15] A.A. Rahman, X. Zhang, Prediction of oscillatory heat transfer

coefficient for a thermoacoustic heat exchanger through ANN

technique, Int. J. Heat Mass Transf. 124 (2018) 1088–1096.

[16] A. Giovanni, Longo, Ludovico Ortombina, Mauro Zigliotto,

Application of ANN for modelling H2O/KCOOH (potassium

formate) dynamic viscosity, Int. J. Refrig 86 (2018) 435–440.

[17] L.-H. Zhi, H.u. Peng, L.-X. Chen, G. Zhao, Viscosity prediction

for six pure refrigerants using different ANNs, Int. J. Refrig 88

(2018) 432–440.
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