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A B S T R A C T   

This paper presents a new semi-analytical method, called the Adomian Decomposition Method (ADM), as well as 
Finite Element Methods, to study forced Reiner-Rivlin non-Newtonian Magnetohydrodynamic (MHD) fluid 
motion confined between two disks. The innovation presented in this paper is the utilization of both analytical 
and numerical methods, namely ADM and FEM, to solve coupled linear differential equations, which enables the 
calculation and examination of parameters such as heat transfer and fluid velocity between the two disks by 
simplifying these equations. This model incorporates the magnetic field, and the system of partial differential 
equations (PDEs) acts as the governing equation in this study, which are then transformed into a set of non-linear 
ordinary differential equations (ODEs) using von Karman analog variables. The Adomian decomposition method 
can be used to solve ODEs that are related to boundary conditions. The main findings of this article suggest that 
as the dimensionless force parameter increases, the displacement of the fluid velocity decreases, as the particles 
collide with each other, the temperature gradient around the disks decreases inversely. Moreover, when the 
stress tensor increases, the heat transfer rate reaches its maximum value, and the transverse velocity gradient 
between different disks decreases.   

1. Introduction 

This article explores the behavior of a forced non-Newtonian MHD 
Reiner-Rivlin viscoelastic fluid motion model that’s confined between 
two disks. Non-Newtonian fluids find use in diverse everyday applica-
tions. It’s amazing how non-Newtonian fluids have so many practical 
applications in various fields like engineering, safety, and even food. The 
fact that the scholars were able to solve the turning disk problems by 
converting the partial differential equations into ODEs really showcases 
the power of mathematical modeling in understanding complex systems. 
It sounds like the scholars were able to find a solution to the two turning 
disk issues by converting the essential conditions into ODEs, which was 
necessary due to the nonlinear behavior of the partial differential con-
ditions. This is a common challenge when working with non-Newtonian 
fluids, which have a variety of applications such as drag reduction, 

pressure technology, and even food production. Zhang et al. [1] focused 
on studying electro-convective instability in a viscoelastic fluid that was 
induced by a stable unipolar between two coaxial conduits. To make the 
analysis easier, Zhang et al. introduced some new factors called simi-
larity changes that allowed them to convert partial differential equations 
(PDEs) into ordinary differential equations (ODEs). Karman [2], to begin 
with, managed the issue of the stationary viscoelastic incompressible 
stream on a pivoting disk. Kumar and colleagues, in their paper pub-
lished in [3], examined the electromechanically driven pulsatile flow of 
nonlinear viscoelastic liquids, and extended their analysis to a limit. 
According to their findings, Kumar et al. [3] observed that the degree of 
flow enhancement is closely linked to the frequency and waveform of 
the applied actuation force. Additionally, Joens and colleagues [4] 
investigated the unsteady linear motion of a circle in a viscoelastic fluid. 
In their study, Moatimid et al. [5] investigated the nonlinear electro 
hydrodynamic (EHD) instability of two viscoelastic liquids under the 
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influence of mass and heat exchange. This article aims to provide a 
method for analyzing the nonlinear stability of a vertical cylindrical 
interface between two Oldroyd-B models. An unaltered pivotal electric 
field impacts the framework and porous medium, and the impacts of 
heat and mass exchange (MHT) are considered. A viscoelastic fluid is a 
non-Newtonian fluid consisting of a dense and elastic component. 
Simply put, a viscoelastic fluid is a mixture of solvent and polymer. 
Examples include paints, DNA suspensions, some biological fluids, and 
others from the chemical industry. Viscoelastic materials include 
amorphous polymers, semi-crystalline polymers, biopolymers, high- 
temperature metals, and bituminous materials. Cracking happens 
when a sudden strain is applied beyond the elastic limit [6–10]. Using a 
molecular dynamics approach, Xuefang et al. [11] studied how the 
atomic behavior of water-Fe3O4 nanofluids is affected by microchannel 

type. Burnoon et al. [12] conducted a study on natural forced cooling 
and utilized Monte Carlo multi-objective optimization to improve the 
mechanical and thermal properties of bipolar disks. These disks are 
intended for use in proton exchange membrane fuel cells. This study 
investigated the cooling, stress, and movement of bipolar disks under 
different environmental conditions (natural and forced cooling). A 
multi-objective optimization is performed under different conditions to 
determine the optimal thickness and number of disks to minimize 
temperature, stress, and displacement. Mozaffarifad and colleagues [13] 
conducted a numerical study on the anomalous heat conduction in the 
absorber disks of solar collectors. They utilized a time-resolved single- 
phase lag model in their investigation. Shah et al. [14] studied the ef-
fects of bio convection on the flow of Prandtl hybrid nanofluids, which 
includes the impact of chemical reactions and microbial movement on 
the tension cloth. In their study, Lou et al. [15] investigated the effect of 
micropolar dusty liquids on the dynamics of MHD rotating fluids when 
the Lorentz force is large. This course aims to analyze the effects of 
relevant parameters on non-Newtonian fluids and fluid dust phases. By 
improving the rotational parameters of the dust particle volume con-
centration, the axial velocity decreases in both steps. However, the 
temperature and transverse velocity exhibit opposite behavior in both 
phases. The aforementioned authors (Ashraf et al. [16]) are referred to 
in an academic manner. The present study investigated the utilization of 
biomechanics for the transportation of developing human embryos [17]. 
The mathematical model used the boundary layer approximation and 
flow assumptions to derive partial differential equations. In a scholarly 
study, Dey [18] analyzed the flow of viscoelastic fluid through an 
annular geometry, taking into account the impact of relaxation and 
retardation effects, as well as an external heat source/sink. To investi-
gate viscoelastic phenomena, the Oldroyd fluid model has been used. In 
academic research, the process involves converting governing partial 
differential equations into ordinary differential equations and solving 
them analytically using modified Bessel functions. Reiner1 and Rivlin2 
introduced a sophisticated non-Newtonian fluid that accurately predicts 
the outflow behavior of various materials, including biological and 
geological substances, polymers, and foods. A viscoelastic fluid is a non- 
Newtonian fluid that consists of both a viscous and an elastic compo-
nent. To put it simply, it is a combination of a solvent and a polymer. 
Examples of substances that can be studied using this method include 
paints, DNA suspensions, various biological fluids, and chemicals used 
in industries [16,19–43]. The innovation in this article lies in the use of 
two analytical and numerical methods, ADM and FEM, to solve coupled 
linear differential equations. By simplifying the equations, these 
methods can calculate and examine the parameters of heat transfer and 
fluid velocity between the environments of two parallel disks. The 
purpose of addressing this issue in the article is to examine the 

Nomenclature 

ε Attrition rate 
τ Shear stress 
δij Kronecker’s delta 
x, y Coordinates 
u, v, w Velocity components 
μnv Coefficient of Newtonian viscosity 
σ Conductivity 
η Non-dimensional variable 
k Thermal conductivity 
p Fluid pressure (pa) 
R0 Reynolds number 
M Magnetic parameter 
Ω Rotational velocity 
Cp Specific heat 

dij physical components of the stress tensor 
T Temperature 
B0 Magnetic 
T0 Temperature of lower disk 
Pr Prandtl number 
τcv Cross-viscosity parameter 

Greek symbols 
ρ Density 
µ Dynamic viscosity 
Φ Viscous-dissipation function 
σ Tension parameter 
Er Eckert Number 
α Dimensionless forced parameter 
v Kinematic viscosity  

Fig. 1a. Show of two disks.  
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behavior of non-Newtonian viscoelastic fluid flow under the influence of 
a magnetic field. We utilized two mathematical, analytical methods to 
calculate a series of critical fluid parameters, including the Reynolds 
number and the Prandtl number. The innovation presented in this article 
lies in the use of two analytical and numerical methods, ADM and FEM, 
to solve coupled linear differential equations. This approach simplifies 
the equations and enables us to calculate and examine the parameters of 
heat transfer and fluid velocity between the two parallel disks’ 
environments. 

1.1. Mathematical formulation 

Researchers named Rainer [37] and Rivlin [38] calculated the stress 
tensor formula as follows: 

τij = − p. δij + 2. μnv. dij + μcv. cij (1) 

Where dij and cij are: 

dij = 1/2. (uij + uji), cij = dim. dmj (2) 

τij is the stretch tensor, δij is Kronecker’s delta, μnv is the modulus of 
Newtonian viscosity and μcv is the modulus of cross viscosity, dij and cij 

Fig. 1b. ADM techniques flow chart.  

Table 1a 
Comparison of f′ (ξ) conclusions.  

ξ ADM method Ref [10] FEM method 

0 0 0 0 
0.1 − 0.062262 − 0.062261 − 0.06227 
0.2 − 0.1636412 − 0.1636532 − 0.1636598 
0.4 − 0.191444 − 0.191433 − 0.191467 
0.6 − 0.039945 − 0.0.03477 − 0.0.03830 
0.8 0.178021 0.178089 0.178670 
1 0.600000 0.6000000 0.6000000  

Table 1b 
Comparison of f (ξ) conclusions.  

ξ ADM method Ref [10] FEM method 

0 0 0 0 
0.1 − 0.002393 − 0.002491 − 0.002452 
0.2 − 0.025454 − 0.0255454 − 0.025454 
0.4 − 0.171417 − 0.171457 − 0.171457 
0.6 − 0.055667 − 0.056667 − 0.055732 
0.8 − 0.082112 − 0.082244 − 0.082031 
1 0 0 0  

Table 1c 
Comparison of h (ξ) conclusions.  

ξ ADM method Ref [10] FEM method 

0 1 1 1 
0.1 0.885088 0.886053 0.895083 
0.2 0.735349 0.737141 0.735789 
0.4 0.561990 0.564862 0.561901 
0.6 0.350558 0.353458 0.350515 
0.8 0.172401 0.173476 0.172407 
1 0 0 0  

Table 1d 
Comparison of T* (ξ) conclusions.  

ξ ADM method Ref [10] FEM method 

0 0 0 0 
0.1 0.313002 0.313470 0.329091 
0.2 0.585394 0.585324 0.592344 
0.4 0.979771 0.973621 0.984661 
0.6 1.396277 1.386877 1.380912 
0.8 1.271326 1.271344 1.281300 
1 1 1 1  

Fig. 2a. A comparison of the convergence process of the three 
mentioned methods. 
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are the physical details of the stress tensor. 
In this chapter, we investigated the conductive flow of Reiner-Rivlin 

fluid induced by two disks. The flow is incompressible and in a steady 
state. The bottom disk is located at z = 0, and the top disk is located at z 
= d. 

A transverse magnetism square B0 of consistent quality is connected 
to the disk. The bottom disk rotates around the z axis with a constant 
angular velocity Ω, and the upper disk stretches with a radial velocity of 
ar. In this perusal, we considered a cylindrical coordinate system √r,θ, 
z√ according to Fig. 1a. There are velocity parameters in both the (r,θ,z) 
and (u,v,w) directions. The bottom disk maintains a constant tempera-
ture of T0, while the bottom is held at a steady temperature of T1.The 
governing equations for momentum, continuity, and energy are: 

Mass conservation in cylindrical coordinates: 

∂u+

∂r
+

u+

r
+

∂w+

∂z
= 0 (3) 

Momentum is conserved in the r direction within a cylindrical 
framework: 

ρ+

(

u+∂u+

∂r
−

v2

r
+ w

∂u+

∂z

)

=
∂τrr

∂r
+

∂τrz

∂z
+

τrr − τθθ

r
−

σB2
0u+

ρ (4) 

Conservation of momentum in the θ direction in a cylindrical coor-
dinate system: 

ρ+

(

u
∂v+

∂r
−

u+v+

r
+ w

∂v+

∂z

)

=
∂τrθ

∂r
+

∂τθz

∂z
+

2τrθ

r
−

σB2
0v+

ρ (5) 

Conservation of momentum in the z direction in a cylindrical coor-
dinate system: 

ρ+

(

u
∂w+

∂r
+ w+∂v+

∂z

)

=
∂τrz

∂r
+

∂τzz

∂z
+

τrz

r
(6) 

Energy conservation in cylindrical coordinates: 

ρ+cv

(

u+∂T
∂r

+ w+∂T
∂z

)

= K
(

∂2T
∂r2 +

1
r

∂T
∂r

+
∂2T
∂z2

)

+Φ (7)  

Φ = τrr. drr + τθθ. dθθ + τzz. dzz + 2(τrθ. drθ + τrz. drz + τθz. dθz), (8) 

Where Φ is the viscous-dissipation function, ρ is the density, σ is the 
conductivity, τrr, τzz, τrθ, τzθ, is the components of stress tensor. k is the 
thermal conductivity, and T is the temperature (see Fig. 1b). 

The boundary conditions for this current demonstrate are: 

u+ = 0, = r. Ω, w+ = 0, T = T0→z = 0 u+ = ar, v+ = 0, w+

= 0, T = T1→z = d (9) 

Now, to convert PDEs to ODEs, we use the following analogous 
variables proposed by Von Karman [2]. 

u+ = r. Ω.f ′(ξ), v+ = r. Ω.h(ξ), w+ = − 2.dΩ.f (ξ), T

= (T − T0)/T1 − T0, (10) 

Where ξ = z/d is dimensionless variable. 
The taking after temperature conveyance is proposed for Eqs. (7) and 

(10). 

Fig. 2b. A comparison of the convergence process of the three mentioned 
methods for velocity. 

Fig. 3a. A comparison of the convergence process of the three mentioned 
methods for h (ε).

Fig. 3b. A comparison of the convergence process of the three mentioned 
methods for T* (ε). 
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T = T0 +
v+Ω
cv

[
ϕ(ξ) + η2ψ(ξ)

]
(11) 

Where the η = r/dis the non-dimensional variable. 
By using the similar variables in (10) for the PDEs in (4–6) and the 

temperature distribution in (11) for the energy equation in (7), we can 
derive a nonlinear ordinary differential equation: 

f 4 + 2R0(hh′ + f .hh‴) − 2R0τcv(f ′ f (4) + 3h′h″ + f″ f‴) − M2f″ = 0 (12)  

h″+ 2R0(f h′ + f ′ h)+ 2R0τcv(f ″ h′ + f ′ h″) − M2h = 0 (13)  

ψ″ − PrR0(2f ′ ψ − 2f ψ′ − 2f″ − 2h′) − 3PrR0τcv(2f ′ f ″ + 2f ′ h′) = 0 (14)  

ϕ″+PrR0(2f ϕ′ + 12f ′2)+ 4ψ − 24PrR2
0τcvf ′3 = 0 (15) 

Where R0 = Ωρd2/μnv is the Reynolds number, Pr = μnvcv/k is the 
Prandtl number, τcv = μcv/ρd2 is the cross-viscosity parameter and M=

(B2
0 σd2/μ1)1/2is the magnetic parameter. 
Concurring to the equation, (11) the dimensionless temperature 

conveyance variable is: 

T* =
T − T0

T1 − T0
= Er[ϕ(ξ) + η2ψ(ξ)] (16) 

Where Er = μcvΩ/(T1 − T0)is the Eckert number. 
According to the formula. (11) The dimensionless temperature dis-

tribution variable is: 

f = 0, f ′ = 0, h = 1, ϕ = 0, ψ = 0, when ξ = 0
f = 0, f ′ = α, h = 0, ϕ = 1/Er , ψ = 0, when ξ = 01

(17) 

Where α = a/Ω is the dimensionless forced variable. 

2. Simulation methodology 

2.1. Dissection of the ADM technique 

General nonlinear equations can be represented in the form given by 
[25]: 

L(u)+Ru+Nu = g(r) (18) 

By applying the converse operator L-1 to each side of equation (49) 
and utilizing the given conditions [25]: 

U = f (x) − L − 1(Ru) − L − 1(Nu) (19) 

In the Adomian decomposition method [25] for nonlinear differen-
tial equations, the nonlinear operator Nu = F(u) is observed. 

F(u) =
∑∞

m=0
Am (20) 

The Adomian strategy characterizes the arrangement U(x) by means 
of a sequence [25]. 

u =
∑∞

m=0
um (21) 

Fig. 4. The effect of Reynolds number, R0, on f′ (ξ), (ξ), h(ξ) and T* (ξ), when τcv = 2, Pr = 10, α = 0.6, M = 2, Er = 2, η = 1.  
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F(u) = F(u0)+F′(u0)(u − u0)+F″(u0)
(u − u0)

2!
+F‴(u0)

(u − u0)

3!
+⋯

(22) 

After dividing the terms evenly, the first few Adomian polynomials 
A0, A1, A2, etc. [25] are: 

A0 = F(u0)

A1 = u1F′(u0) A2 = u2F′(u0) +
1
2!

u1u1F″(u0)
(23)  

2.2. Dissection of the FEM technique 

The finite element method (FEM) is a well-known strategy for 
numerically solving differential equations encountered in engineering 
and numerical modeling. Common areas of interest include the tradi-
tional fields of structural analysis, heat transfer, fluid flow, mass trans-
fer, and electromagnetic potential. One of the primary benefits of using 
the finite element method is that engineers can simulate physical phe-
nomena, reducing the need for physical prototypes and optimizing 
components as part of the project’s design process. The finite element 
method is commonly utilized in mechanical, aviation, automotive, civil 
engineering projects, and biomechanics. 

3. Application of the ADM method 

Based on the Adomian Decomposition Method, the linear portion of 
the equation was separated and set to 0. As a result, a differential 

equation with boundary conditions was solved. 

d4

dη4f0(ξ) = 0 (24)  

d2

dη2h0(ξ) = 0 (25)  

d2

dη2ψ0(ξ) = 0 (26)  

d2

dη2ϕ0(ξ) = 0 (27)  

f0(ξ) = ξ2 − 2ξ2 + ξ ↔ ψ0(ξ) = ξ+ 1 ↔ ϕ0(ξ) = ξ+ 1 (28) 

Next, the nonlinear differential equation in Equation (12) is isolated. 

A0 = − R0(3ξ2 − 5ξ + 1)(6ξ − 5) (29)  

B0 = R0(ξ2 − 2ξ + ξ)(6ξ − 5) (30)  

C0 = − M(6ξ − 5) (31)  

A1 =
(
− R0(6ξ − 5) − 6R0(3ξ2 − 5ξ + 1)

)
f1(ξ) (32)  

B1 =
(
R0(3ξ2 − 5ξ + 1)(6ξ − 5) + 6R0(ξ3 − 3ξ + ξ)

)
f1(ξ) (33)  

C1 = − 6Mf1(ξ) (34) 

Fig. 5. The effect of the cross-viscosity parameter, τcv, on f′ (ξ), (ξ), h (ξ) and T* (ξ), when R0 = 0.2, Pr = 10, α = 0.6, M = 2, Er = 2, η = 1.  
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For equation (13): 

D0 = − τcvR0(ξ3 − 2ξ + ξ) (35)  

D1 = − τcvR0(3ξ2 − 4ξ + 1)h1(ξ) (36) 

For equation (14): 

E0 = − R0pr(ξ3 − 2ξ2 + ξ) (37)  

E1 = − R0pr(3ξ2 − 4ξ + 1)ψ1(ξ) (38)  

E1 = − R0pr(3ξ2 − 4ξ + 1)ψ1(ξ) (39) 

According to the ADM strategy, the following values of the param-
eters in the equation were assumed: τcv = 2, α = 0.5, M = 1, Er = 1, Pr =
20, η = 1, and R0 = 0.1. The ADM method solution yielded the following 
functions: 

f (ξ) = (0.01164396181)ξ12 − (0.04065039409)ξ11 + (0.11604434655)ξ10

− (0.1317874340)ξ9 + (0.06445920287)ξ8 + (0.001455306379)ξ7

− (0.04562227080)ξ6 + (0.1870027952)ξ5 − (0.1540473657)ξ4

+(0.5911555227)ξ3 − (0.5439795898)ξ2,

(40)  

f ′(ξ) = (0.11142795417)ξ11 − (0.5552943350)ξ10 + (1.150642655)ξ9

− (1.116086906)ξ8 + (0.6956736230)ξ7 + (0.05318714465)ξ6

− (0.3637336248)ξ5 + (0.6650139760)ξ4 − (0.6461894628)ξ3

+(1.763466568)ξ2 − (0.9379591796)ξ
(41)    

Fig. 6. The effect of the dimensionless forced parameter, α, on f′ (ξ), (ξ), h(ξ) and T* (ξ), when R0 = 0.2, Pr = 10, τcv = 2, M = 2, Er = 2, η = 1.  

h(ξ) = (0.0045209216680)ξ10 − (0.008279781387)ξ9 + (0.008970858397)ξ8

+(0.02232372201)ξ7 − (0.04113552321)ξ6 + (0.07554752866)ξ5

− (0.06932690379)ξ4 + (0.05544621366)ξ3 + (0.5482399204)ξ2 − (1.664335601)ξ + 1,
(42)   

A.S. Behbahan et al.                                                                                                                                                                                                                           



Alexandria Engineering Journal 80 (2023) 48–57

55

ψ(ξ) = (0.1326813775)ξ10 − (0.4432527090)ξ9 + (0.7510097656)ξ8

− (0.8805909382)ξ7 + (0.3653258478)ξ6 + (0.3524606104)ξ5

− (1.612631135)ξ4 + (2.167942145)ξ3 − (2.879522922)ξ2 + (1.722344660)ξ
(43)   

4. Results and discussion 

In this section, we aim to confirm the accuracy of the ADM and FEM 
techniques by comparing them with the HPM [10], which was used for 
validation. We will also compare them with the respective HPM 

procedures. Tables and charts will be utilized to prepare the comparison. 
Therefore, Tables 1a–1d and Figs. 2a–3b demonstrate the accuracy of 
the Adomian decomposition method. Based on graphs 2 and 3, the 
convergence level of three modes was correctly aligned and there were 
no calculation errors with the least amount of error. When the values of 

τcv = 1, Pr = 10, α = 0.6, M = 2, Er = 2, and η = 1 change, the Reynolds 
number R0 will also change. As a result, the ADM arrangements of spiral 
velocity, pivotal velocity, transverse velocity, and temperature profile 
will be altered independently. The four graphs in Fig. 4 show that only 
the temperature profile will change significantly as the Reynolds num-
ber changes. Other parameters, such as radial, axial, and transverse, do 
not vary much. When the values of R0 = 0.2, P = 10, α = 0.6, M = 2, Er 

Fig. 7. The affect of the magnetic variable, on f′ (ξ), (ξ), h(ξ) and T* (ξ), when R0 = 0.2, Pr = 10, τcv = 2, M = 2, Er = 2, η = 1.  

ϕ(ξ) = (0.3260898128)ξ − (1.124418793)ξ9 + (1.549582765)ξ8

− (0.8479440422)ξ7 − (1.347612264)ξ6 + (2.724050383)ξ5

− (0.7997274151)ξ4 − (1.228980644)ξ3 + (0.0018232171616)ξ2 + (1.708138081)ξ,
(44)   
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= 2, and η = 1 change, the cross-viscosity parameter τcv changes. As a 
result, the ADM arrangements of outspread velocity, pivotal velocity, 
transverse velocity, and temperature profile change individually. By 
conducting more frequent and continuous checks on picture number 4, 
we can observe that as the Reynolds number increases, the heat transfer 
rate reaches its maximum value, and the velocity gradient between 
different points also increases. 

The four graphs in Fig. 5 demonstrate that there are no significant 
changes in radial velocity, axial velocity, transverse velocity, and tem-
perature section when the cross-viscosity variable changes. When the 
dimensionless forced parameter changes (with R0 = 0.2, Pr = 10, τcv =
2, M = 2, Er = 2, η = 1 as parameters), the ADM and FEM solutions for 
the radial and longitudinal velocity axes, lateral velocity, and corre-
sponding temperature profile will be affected. With more continuous 
checks on picture number 5, it becomes apparent that as the stress tensor 
increases, the heat exchange rate reaches its maximum value, and the 
transverse velocity gradient between different disks decreases. The four 
graphs in Fig. 6 illustrate that changes in the dimensionless forcing 
parameter lead to significant variations in the axial velocity and tem-
perature profile, while the radial velocity remains constant. As a 
Magnetism parameter, M changes when R0 = 0.2, Pr = 10, τcv = 2, α =
0.6, Er = 2, and η = 1. This alteration causes changes in the ADM and 
FEM arrangements of the spiral velocity, pivotal velocity, transverse 
velocity, and temperature profile, individually. Based on the results 
interpreted from Fig. 6, as the dimensionless force parameter increases, 
the displacement of fluid velocity decreases, and the collision of parti-
cles also decreases. Additionally, there is an inverse trend on the tem-
perature gradient around the disks, leading to an increase in heat 
transfer between fluid particles compared to before. They are appeared 
in four charts compared to Fig. 7, which seems that when the Magnetic 
system changes, the behavior of the radial velocity, axial velocity, 
transverse velocity, and temperature profile will change significantly. As 
the effects of the magnetic boundary layer around the discs grow and 
continue, the fluid velocity increases accordingly, and the boundary 
layer becomes thicker. This increase in the growth of the velocity 
boundary layer and velocity gradient leads to a low heat transfer value 
compared to the previous states. Additionally, increasing the magnetic 
force results in a decrease in the transverse velocity of the fluid. 

5. Conclusion 

This paper presents a new semi-analytical method, called the Ado-
mian Decomposition Method (ADM), as well as Finite Element Methods, 
to study forced Reiner-Rivlin non-Newtonian Magnetohydrodynamic 
(MHD) fluid motion confined between two disks. The innovation pre-
sented in this paper is the utilization of both analytical and numerical 
methods, namely ADM and FEM, to solve coupled linear differential 
equations, which enables the calculation and examination of parameters 
such as heat transfer and fluid velocity between the two disks by 
simplifying these equations. This model incorporates the magnetic field, 
and the system of partial differential equations (PDEs) acts as the gov-
erning equation in this study, which are then transformed into a set of 
non-linear ordinary differential equations (ODEs) using von Karman 
analog variables. The Adomian decomposition method can be used to 
solve ODEs that are related to boundary conditions. The main findings of 
this article suggest that as the dimensionless force parameter increases, 
the displacement of the fluid velocity decreases, as the particles collide 
with each other, the temperature gradient around the disks decreases 
inversely. Moreover, when the stress tensor increases, the heat transfer 
rate reaches its maximum value, and the transverse velocity gradient 
between different disks decreases. 

From this paper, we can conclude that:  

• This methodology demonstrates that ADM and FEM techniques can 
be utilized when numerical solutions for differential equations are 
available.  

• The validation demonstrated that the ADM technique is sufficiently 
accurate in comparison to numerical results or previous semi- 
analytical methods like HPM. 

• The velocities and temperature in the radial, axial, and lateral di-
rections, as well as for different Reynolds numbers, transverse vis-
cosity parameters, dimensionless constraint parameters, and 
magnetic parameter values, exhibit behavior that is similar to the 
published results of the HPM solution. 
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