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Abstract: In this paper, a new structure of the quadrature hybrid coupler (QHC) with compact size is
proposed using capacitive composite lines and meandered open stubs. The proposed coupler works
at 1.6 GHz with a 0.4 GHz bandwidth, which shows 25% fractional bandwidth (FBW). The proposed
QHC occupies only 15 mm × 15 mm (0.12 λ × 0.12 λ), while the typical QHC size is 32 mm × 32 mm
(0.25 λ × 25 λ) at the same working frequency. In the designed structure, two symmetric meandered
stubs and two symmetric π-shaped composite networks including capacitors and microstrip lines
are applied together. The designed QHC has a small size and occupies only 22% of the area of the
conventional QHC, resulting in a 78% size reduction. The designed prototype has been analyzed,
fabricated and tested, and the experimental results verify the simulated and analysis results. The
results show a better than 27 dB return loss, more than 28 dB isolation between the output ports and
less than 0.4 dB insertion loss at the working frequency of 1600 MHz. With the achieved desirable
specifications, the fabricated QHC is a suitable choice for wireless microwave applications.

Keywords: quadrature hybrid coupler; compact size; lumped capacitors; communication systems

1. Introduction

Microstrip quadrature hybrid couplers (QHCs) are passive devices, which are widely
used in communications and radio frequency (RF) systems to split or combine signals.
They divide an incident signal into two output signals with a 90-degree phase difference [1].
QHCs have numerous benefits, such as high isolation, low insertion loss, and excellent
phase and amplitude balance. The high isolation of quadrature hybrid couplers allows
them to separate signals without interference, which is particularly important in RF systems,
where multiple signals need to be transmitted and received. Additionally, the low insertion
loss of quadrature hybrid couplers ensures that minimal power is lost during signal
transmission, resulting in improved system efficiency [2]. The conventional quadrature
hybrid coupler includes four bulky quarter-wavelength lines, occupying a large area.
Recently, several works have been introduced to design couplers with a small size using
different methods [3].

Utilizing LC (inductance–capacitance) components in QHCs is a common strategy
for enhancing their performance [4–7]. These passive devices are integral in microwave
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and RF systems, facilitating power division and signal combining tasks. By incorporating
carefully designed inductors and capacitors into the QHC architecture, several advantages
can be achieved. LC components allow for precise impedance matching, ensuring minimal
signal reflection and optimal power transfer. Moreover, they enable broader bandwidth
capabilities, enabling these couplers to operate effectively over a wider range of frequencies
with wide suppression band. The addition of inductors and capacitors also contributes
to improve the isolation between the input and output ports, reducing unwanted signal
coupling [8,9]. In [10], by using LC components, a compact size co-directional coupler was
obtained. In [5], a hybrid coupler was designed with LC elements to design a coupler at
3 GHz with minimized input return loss by adjusting the quality factor of each element. A
coupler with lumped elements is presented in [6] to obtain arbitrary performances, such as
the power division ratio, phase, and impedance matching.

Incorporating resonators and open stubs within QHCs is another strategy to enhance
their performance in RF and microwave systems. Resonators, designed to operate at specific
frequencies, can be integrated into the QHC structure to introduce frequency-selective
properties. By carefully tuning these resonators, it becomes possible to achieve narrowband
filtering functions within the coupler, facilitating signal separation or channelization. On
the other hand, open stubs have been used to fine-tune the QHC impedance and phase
characteristics, offering control over the power division and output isolation. In essence,
the combination of resonators and open stubs in couplers make it possible to design
couplers with desirable parameters, such as compact size, bandwidth selectivity and
desirable suppression band. A wide band coupler was designed in [11] using triple ring
resonators and open stubs, which can provide a 53% operating bandwidth. A compact
size was achieved in the designed coupler in [12], using coupler resonators in the structure
of the conventional coupler. In addition, other types of resonators, such as spiral ring
resonators [13], half-wave resonator [14], split ring resonators [15–17] and metamaterial
resonators [18] have been used to improve the QHCs performances. Different kinds
of resonators have also been applied in other microwave devices like diplexers [19–21],
filters [22–29], sensors [30,31] and dividers to provide compact size, harmonics suppression
and performance improvement.

Using defected ground structures (DGS) and electromagnetic bandgap (EBG) struc-
tures in QHCs represents a complex approach to elevate their performance [32–35]. DGS
structures are strategically introduced into the ground plane of the coupler, creating stop-
bands that suppress unwanted frequencies, thus enhancing the coupler filtering capabilities.
On the other hand, EBG structures are utilized to manage electromagnetic wave propa-
gation within the coupler, mitigating undesired radiation and improving the isolation
between ports. These periodic structures act as photonic bandgap materials, controlling
the flow of electromagnetic waves and enabling designers to achieve remarkable isolation
and reduced crosstalk. Higher-frequency operations can also be achieved for QHC using
crystal photonic techniques [36–39]. The DGS technique was used in [34], to design a QHC
with increased characteristic impedance operating at 1.8 GH. Also, the DGS technique can
be used to obtain broadband QHC, as studied in [32].

In [40], a parallel coupled-line and a stepped impedance resonator were used to shape
an ultra-wideband directional coupler. This coupler provided a wide operating band with
a compact size, but due to the applied coupled-line, this coupler had high insertion loss.

Recently, the incorporation of artificial neural networks (ANN), deep learning and
optimization techniques in the design and performance improvement of QHCs has become
popular [41–44]. These machine learning approaches can rapidly explore a vast design
space, leading to coupler configurations that maximize performance metrics like bandwidth,
insertion loss and isolation.

Improving isolation between ports and reducing mutual coupling has been a re-
cent focus in many works. Recently, to achieve high output isolation, several meth-
ods have been employed. Commonly used techniques include the use of applied res-
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onators [45], partial ground stub [46] and applied electromagnetic bandgap cells [47] to
enhance isolation parameters.

In [48], a small coupler, which is correctly working at 3.5 GHz, is presented. This
coupler is a good candidate for 5G applications. In this coupler, a T-shaped structure and
open-ended stubs are applied to reduce the large size of the conventional coupler. The
reported small coupler occupied 47% of the typical coupler at 3.5GHz and also provided
more than 20% FBW. The S-parameters curves of this coupler [48] demonstrate that the
device works at a wide operating band of 0.87 GHz with high output isolation and low
return losses.

In [49], a high directivity directional coupler with a small size is presented for high-
power monitoring at high frequencies. In directional couplers design, parallel coupled
lines are widely used as popular solution, while these coupled lines inherently exhibit
poor directivity. To improve directivity, previous approaches have often resulted in other
restrictions, such as larger sizes or poor structures for high-power signals that are difficult
to integrate with other devices. In the introduced method in [49], ring structure with four
ports were used, which resulted in a small size.

In [50], a filtering coupler with broadband response and highly selectivity is presented.
In this structure, an open stub and coupled line are applied tighter at each port, achieving
excellent selectivity and a broad operating bandwidth.

The obtained results in [50] demonstrate a smaller than 0.5 dB insertion loss and a
better than 15 dB output ports isolation and return loss parameters in a wide working band
of 2.5 GHz.

In [51], a design method for a forward broadside coupler that is both compact and
highly efficient in the wide working frequency range of 3.5 to 3.8 GHz is reported. This cou-
pler consists of two parallel transmission lines, which are optimized using the binary PSO
method. The adaptability of the applied BPSO allows for the precise tuning of the coupling
level and working frequency, while also maintaining a small size of 0.12 λ g × 0.10 λ g. The
achieved results in [51] confirm a 3 dB forward coupler with low sensitivity to misalignment
between the two coupled transmission lines.

In [52], a design for a microstrip ring-hybrid coupler is introduced, which is highly
compact and efficient. The long traditional quarter wavelength microstrip lines have been
replaced with short quarter-wavelength super shape transmission lines, resulting in a 74%
reduction in size compared to conventional ring hybrids. This coupler has been designed
and measured in [52] at an operating frequency of 1300 MHz. The results from both
measurements and simulations confirm the effectiveness of the proposed coupler. This
compact, single-layer design is cost-effective and suitable for planar fabrication, making it
a good choice for modern communication systems.

In [53], a design for a broadband filter utilizing a multilayer structure is presented.
This multilayer structure was constructed by bonding three dielectric substrates with
different thicknesses. The design incorporates DGS cells and blind holes to improve the
filter performance. Measurement and simulation results in [53] show 41% FBW and 0.58 dB
insertion loss at the working frequency of 12.795 GHz.

The performed study in [54] presents an analysis and design of a small dual-band RRC
for WLAN applications. This coupler is tuned at two frequencies, 2.45 and 5.25 GHz, using
a new design of an artificial dual-band line section with the same impedance and phase
shift at the designed operating frequencies. The artificial line section consisted of two lines
loaded by a short-circuited coupled line stub, and an analytical formulation was developed
to design this section. The designed rat race coupler in [54] is based on this artificial
transmission line section, which was implemented using a printed line configuration. The
geometry of the design is slightly modified to a new shape suitable for the fabrication
process, presented as an electrical ring, with coaxial via feeding points transferred to four
printed microstrip lines. Good agreements between analytical, numerical and experimental
results were obtained, demonstrating the effectiveness of the reported design procedure,
which can be generalized to other dual-frequency applications.
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In all of the explained research, the coupler parameters are not simultaneously im-
proved, while some features are enhanced. In the proposed designed, a simple QHC with
four T-shaped networks is proposed, and the presented design is analyzed. Then, two
horizontal branches are bended to reduce the circuit size, where the achieved coupler
provides a 30% of size reduction in this step. Finally, the long vertical branches are replaced
with the proposed composite lines, including two capacitors and a microstrip line with
π-shaped structure, and the proposed QHC shows a 78% size reduction, compared with
the typical coupler.

2. The Conventional 1600 MHz Quadrature Hybrid Coupler

The diagram in Figure 1a displays the configuration of the typical 1600 MHz quadra-
ture hybrid coupler. It includes four lengthy λ/4 branches that correspond to two vertical
branches with 50 Ω and two horizontal lines with 35 Ω. Using the Rogers_RO4003 substrate
(with εr = 3.38 and thickness of 20 mil), the typical coupler dimensions are 32 mm × 32 mm,
equivalent to 0.25 λ × 25 λ. However, the device’s large size is a disadvantage of this con-
ventional design.
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Figure 1. The (a) configuration and (b) S-parameters of the typical 1600 MHz quadrature hybrid
coupler with four long λ/4 branches.

Figure 1b illustrates the frequency response of the typical 1600 MHz quadrature hybrid
coupler. The S21 and S31 parameters exhibit −3.05 dB amplitudes, indicating a 0.05 dB
insertion loss at the operating frequency. The S11 and S41 have amplitudes below −35 dB,
demonstrating the excellent performance of the conventional coupler at the operating
frequency. However, the conventional QHC is not suitable for higher frequencies as it lacks
sufficient suppression of unwanted signals, which is a significant drawback of this design.

3. Design Process of the Primitive 1600 MHz Quadrature Hybrid Coupler with
T-Shaped Branches

The design flowchart of the designed coupler is demonstrated in four steps in Figure 2.
In the design process, in the first step, the conventional coupler is designed, then in
the second step, the primitive coupler is provided, with four T-shaped structures. All
dimensions of the primitive coupler are obtained analytically. However, this structure has
a large size of 45 mm × 47 mm. In the third step, two long horizontal branches are bended,
but this structure still has a large size of 15 mm × 47 mm. Finally, composite π-shaped
networks with lumped elements are applied instead of two long vertical branches. All
values of applied lumped elements are obtained analytically. The proposed coupler has an
ultra-small size of 15 mm × 15 mm, which demonstrates a 78% size reduction compared
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with the typical structure. The proposed coupler has a straight forward design process and
has an ultra-compact size.
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The typical microstrip coupler occupies a large area, and also, it cannot suppress
harmonics at higher frequencies, which is undesirable. To overcome these disadvantages,
the designed structure of the primitive coupler is demonstrated in Figure 3, in which four
T-shaped branches are used in the structure of the typical QHC.
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In order to find the dimensions of the utilized branches in the primitive coupler, four
applied T-shaped branches are considered to be equivalent to the four typical branches.
Therefore, as seen in Figure 4, the applied typical stub in the conventional QHC and applied
T-shaped stubs in the primitive QHC should have same response.
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The ABCD matrix for the microstrip line with impedance of ZA and electrical length
of θA can be obtained from Equation (1) as follows:

[ABCD] =

[
cos(θA) jZAsin(θA)

jsin(θA)
ZA

cos(θA)

]
(1)

The conventional QHC has four branches with λ/4 electrical length. Two horizontal
branches have Z0/

√
2 Ω impedance and two vertical branches have Z0 Ω impedance. The

ABCD matrices for the conventional lines with Z0 and Z0/
√

2 impedances are listed as
Equations (2) and (3) as follows:

[ABCD] =

 0 jZ0√
2

j
√

2
Z0

0

 (2)

[ABCD] =

[
0 jZ0
j

Z0
0

]
(3)
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The ABCD matrix for the T-shaped branches can be calculated by multiplying the
ABCD matrices of each stub, as shown in Figure 5.

The ABCD matrix for the shunt load on the T-shaped stub indicated with ZB and θB
can be calculated as written in Equation (4).

[ABCD]Y=

[
1 0

YS 1

]
(4)

where the Ys can be calculated as follows:

Ys = −jYB cot(θB) (5)
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Therefore, the ABCD matrix for the T-shaped structure can be obtained as written in
Equation (6).

[ABCD]T−shaped=

[
cos(θA) jZAsin(θA)
jsin(θA)

ZA
cos(θA)

]
×
[

1 0
−jYBcot(θB) 1

]
×
[

cos(θA) jZAsin(θA)
jsin(θA)

ZA
cos(θA)

]
(6)

After some simplification and equating the obtained ABCD matrix of the T-shaped
stub with the conventional λ/4 line, the following equations are obtained:

ZA = Z0 cotθA (7)

ZB =
1
2

[
ZA tanθB sin2θA

cos2θA

]
(8)

Equation (7) is written for the vertical branches, while Z0 should be substituted
with Z0/

√
2 for horizontal branches in this equation, because of the conventional coupler

structure. The obtained values for the T-shaped branches are listed in Table 1.

Table 1. The obtained values of the T-shaped branches in the primitive coupler.

Parameter Z01 Z2 Z3 Z4 Z5 θ2 θ3 θ4 θ5

Value 50 Ω 84 Ω 42 Ω 120 Ω 60 Ω 22.50 450 22.50 450

L (mm) 5 7.5 15.25 7.5 15.6 7.5 15.5 7.5 15.5
W (mm) 1.2 0.4 1.5 0.2 0.9 - - - -

The layout of the primitive coupler is depicted in Figure 6a, and its frequency
response is depicted in Figure 6b. This coupler has a large size and occupies an area of
47 mm × 45.1 mm, which is larger than the conventional coupler. It should be noted
that L3 = 15.25 mm, L5 = 15.6 mm, W3 = 1.5 mm and W5 = 0.9 mm are obtained from
analyses, as listed in Table 1. These dimensions are tuned using the EM simulation,
which are equal to L3 = 14.8 mm, L5 = 15.2 mm, W3 = 1.5 mm and W5 = 0.9 mm, which
shows that the EM simulation and analysis results have validated each other.
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4. Design Process of the Primitive 1600 MHz Quadrature Hybrid Coupler with
T-Shaped Branches and Bended Stubs

Open stubs are used in couplers to improve their performance as the common method,
so that they can provide a wider bandwidth. Additionally, open stubs can be used to
improve the isolation between the coupled and isolated ports of the coupler. However,
there are some drawbacks to using open stubs in couplers. One major disadvantage is that
they can increase the size of the coupler, which may not be desirable for some applications.
To reduce the size of microstrip couplers while maintaining their performance, meandered
lines or bent lines methods can be used.
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As the results show, the primitive 1600 MHz quadrature hybrid coupler with T-shaped
branches occupies a large area. Therefore, to reduce the circuit size, two horizontal stubs
are bended as depicted in Figure 7a, and its frequency response is depicted in Figure 7b.
This coupler has a relatively large size and occupies an area of 47 mm × 15 mm, which
provides a 30% size reduction, compared with the conventional coupler.
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5. Design Process of the Proposed 1600 MHz Quadrature Hybrid Coupler

As seen in the previous section, two vertical open stubs in the primitive coupler have
long lengths, which resulted in the large size of the primitive coupler. Therefore, to reduce
the size of these stubs, lumped capacitors are used with a microstrip line as a composite
line, as shown in Figure 8.
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Applied lumped capacitors in the microstrip coupler have a number of advantages.
They allow for the tuning of the coupler’s performance to meet specific requirements. This
is because the capacitance of the lumped capacitor can be adjusted to alter the coupling
coefficient and bandwidth of the coupler.

However, there are also some drawbacks to using applied lumped capacitors in
microstrip couplers. One major disadvantage is that they can introduce unwanted parasitic
effects, which can degrade the performance of the coupler. Additionally, the use of lumped
capacitors can limit the frequency range over which the coupler can operate effectively.

To obtain the element values of the composite line in the designed QHC, the ABCD
matrix analyses are used. The ABCD matrices of capacitors and the ZC transmission line
are written in Equations (9) and (10) as follows:

MC =

(
1 0

Cωi 1

)
(9)

MZC =

(
cos(θC) ZC sin(θC)i
sin(θC)i

ZC
cos(θC)

)
(10)

To have the same response, both simple stub and π-shaped networks should have
equal ABCD matrices. So, the final equations can be written by creating the equation of
MC ×MZC ×MC = MZ3 as shown in Equation (11):(

cos(θC)− CZCω sin(θC) ZCω sin(θC)i
sin(θC)i

ZC
+ Cω(cos θC − CZCω sin(θC))i + Cω cos(θC)i cos(θC)− CZcω sin(θC)

)

=

(
cos(θ3) Z3 sin(θ3)i
sin(θ3)i

Z3
cos(θ3)

) (11)
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One solution for Equation (11) is calculated, and the obtained values are written in
Table 2.

Table 2. The obtained values of the π-shaped network.

Parameters Zc Cc θc

values 140 (Ω) 0.5 (pF) 360

The schematic diagram of the proposed 1600 MHz quadrature hybrid coupler is de-
picted in Figure 9, and in this symmetric structure, microstrip stubs and lumped capacitors
are used together.
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Figure 9. The schematic diagram of the proposed 1600 MHz quadrature hybrid coupler using four
lumped capacitors.

The typical QHC is often bulky and allows unwanted signals to pass through without
suppression at higher frequencies. To address these issues, a new QHC design featuring
four lumped capacitors and two open-ended stubs at 1600 MHz has been proposed. The
resulting layout is depicted in Figure 10, which provides an ultra-compact size of only
15 mm × 15 mm, equaling to 0.12 λ × 0.12 λ, representing a 78% reduction in size com-
pared to the conventional 1600 MHz coupler. In the proposed structure, two symmetric
meandered stubs and two symmetric π-shaped composite networks including capacitors
and microstrip lines are used together.
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Figure 10. The layout of the proposed 1600 MHz quadrature hybrid coupler with lumped components.

Figure 11 displays the S-parameters of the proposed QHC with lumped components
at 1600 MHz. The designed QHC exhibits an excellent performance at this frequency
and offers a stop band from 2 GHz to 2.4 GHz with attenuation levels exceeding 20 dB.
The coupler operates effectively within a 400 MHz bandwidth at 1600 MHz, indicating a
fractional bandwidth of 25%.

As seen in Figure 11, there is a small unbalance between the output ports at the
operating frequency, which is due to an adjustment in the values of the lumped components
and meandered open stubs dimension, which are tuned for the size reduction in the
proposed coupler.

The fabricated photo of the proposed 1600 MHz coupler is illustrated in Figure 12,
which was fabricated on the Rogers_RO4003 substrate with εr = 3.38 and 20 mil thickness.

Figure 13 shows the S-parameters of the proposed 1600 MHz QHC, both measured and
simulated. The proposed QHC performs flawlessly at 1600 MHz and has a wide operating
bandwidth of approximately 400 MHz, equivalent to a 25% fractional bandwidth (FBW).
Table 3 compares the proposed 1600 MHz QHC with other similar works. The proposed
coupler offers the best size reduction compared to other reported works and delivers good
performance in comparison to related works.
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Figure 13. The simulated and measured curves of the proposed 1600 MHz QHC for the (a) ampli-
tude and (b) phase parameters. 
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Table 3. Comparison between proposed 1600 MHz QHC and other related works.

Ref.
Operation
Frequency

(GHz)

Return
Loss (dB)

Isolation
(dB)

Insertion
Loss (dB)

Phase
Difference
(Degree)

Size
Reduction

Band-
width
(MHZ)

FBW Applied Method

[55] 0.9 28 28 0.26 90 ± 0.3 64% 180 20% H-shaped Lines

[56] 1.6/2.1 21 24 2.4 90 ± 2.8/90 ± 4.5 - 150/300 9%/14% Coupled
Resonators

[57] 1 31 26 0.6 90 ± 1.2 67% 124 12.4% Coupled Lines

[58] 2.4 20 20 0.4 0 ± 1.4 70% 650 27% Open Stubs

[59] 2 17 32 1.4 0 ± 0.9 49% 110 5% Coupled
Resonator

This
work 1.6 27 28 0.4 90 ± 0.1 78% 400 25%

Lumped Elements
and Meandered

Lines

6. Conclusions

In this study, a compact quadrature hybrid coupler (QHC) utilizing lumped com-
ponents and meandered stubs is proposed. The design incorporates four T-shaped
branches and four lumped capacitors instead of conventional branches. The proposed
QHC performs well at 1600 MHz with a 400 MHz bandwidth, equivalent to a 25%
fractional bandwidth (FBW). The size of the proposed QHC is ultra-compact, occupy-
ing only 22% of the size of a typical coupler. The proposed coupler occupies only an
area of 15 mm × 15 mm (0.12 λ × 0.12 λ), compared to the conventional 1600 MHz
coupler size of 32 mm × 32 mm (0.25 λ × 25 λ). Additionally, the proposed QHC
exhibits a suppression band from 2 GHz to 2.4 GHz with a more than 20 dB attenuation
level. Experimental results confirm the validity of the simulated results. Overall, the
proposed QHC outperforms other similar works in terms of the size reduction and
provides good performance compared to related works.
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42. Calik, N.; Güneş, F.; Koziel, S.; Pietrenko-Dabrowska, A.; Belen, M.A.; Mahouti, P. Deep-learning-based precise characterization
of microwave transistors using fully-automated regression surrogates. Sci. Rep. 2023, 13, 1445. [CrossRef]

43. Alibakhshikenari, M.; Ali, E.M.; Soruri, M.; Dalarsson, M.; Naser-Moghadasi, M.; Virdee, B.S.; Stefanovic, C.; Pietrenko-
Dabrowska, A.; Koziel, S.; Szczepanski, S. A comprehensive survey on antennas on-chip based on metamaterial, metasurface,
and substrate integrated waveguide principles for millimeter-waves and terahertz integrated circuits and systems. IEEE Access
2022, 10, 3668–3692. [CrossRef]

44. Alibakhshikenari, M.; Virdee, B.S.; Benetatos, H.; Ali, E.M.; Soruri, M.; Dalarsson, M.; Naser-Moghadasi, M.; See, C.H.; Pietrenko-
Dabrowska, A.; Koziel, S. An innovative antenna array with high inter element isolation for sub-6 GHz 5G MIMO communication
systems. Sci. Rep. 2022, 12, 7907. [CrossRef]

45. Roshani, S.; Shahveisi, H. Mutual coupling reduction in microstrip patch antenna arrays using simple microstrip resonator. Wirel.
Pers. Commun. 2022, 126, 1665–1677. [CrossRef]

46. Khan, A.; Bashir, S.; Ghafoor, S.; Rmili, H.; Mirza, J.; Ahmad, A. Isolation Enhancement in a Compact Four-Element MIMO
Antenna for Ultra-Wideband Applications. Cmc-Comput. Mater. Contin. 2023, 75, 911–925.

47. Khan, A.; Bashir, S.; Ghafoor, S.; Qureshi, K.K. Mutual coupling reduction using ground stub and EBG in a compact wideband
MIMO-antenna. IEEE Access 2021, 9, 40972–40979. [CrossRef]

48. Abouhssous, K.; Zugari, A.; Zakriti, A. A compact microstrip coupler using T-shape and open stubs for fifth generation
applications. In E3S Web of Conferences; EDP Sciences: Ulys, France, 2022.

49. Chang, W.I.; Chung, M.J.; Park, C.S. Compact High-Directivity Contra-Directional Coupler. Electronics 2022, 11, 4115. [CrossRef]
50. Barik, R.K.; Koziel, S.; Szczepanski, S. Wideband highly-selective bandpass filtering branch-line coupler. IEEE Access 2022, 10,

20832–20838. [CrossRef]
51. Parsaei, K.; Keshavarz, R.; Boroujeni, R.M.; Shariati, N. Compact Pixelated Microstrip Forward Broadside Coupler Using Binary

Particle Swarm Optimization. IEEE Trans. Circuits Syst. I: Regul. Pap. 2023, 1–10. [CrossRef]
52. Tayebi, A.; Zarifi, D. On the miniaturization of microstrip ring-hybrid couplers using Gielis supershapes. IETE J. Res. 2023, 69,

1160–1165. [CrossRef]
53. Li, C.; Ma, Z.-H.; Chen, J.-X.; Wang, M.-N.; Huang, J.-M. Design of a Compact Ultra-Wideband Microstrip Bandpass Filter.

Electronics 2023, 12, 1728. [CrossRef]
54. El-Rahman, A.; Sherine, I.; Ibrahim, K.M.; Attiya, A.M. A Dual-Band Rat Race Coupler for WLAN Applications. Int. J. Microw.

Opt. Technol. 2023, 18, 473–480.
55. Krishna, I.S.; Barik, R.K.; Karthikeyan, S.; Kokil, P. A miniaturized harmonic suppressed 3 dB branch line coupler using H-shaped

microstrip line. Microw. Opt. Technol. Lett. 2017, 59, 913–918. [CrossRef]
56. Chen, C.-F.; Chang, S.-F.; Tseng, B.-H. Compact microstrip dual-band quadrature coupler based on coupled-resonator technique.

IEEE Microw. Wirel. Compon. Lett. 2016, 26, 487–489. [CrossRef]
57. Reshma, S.; Mandal, M.K. Miniaturization of a 90◦ hybrid coupler with improved bandwidth performance. IEEE Microw. Wirel.

Compon. Lett. 2016, 26, 891–893. [CrossRef]

https://doi.org/10.3390/s23021044
https://doi.org/10.1049/el:20063025
https://doi.org/10.2528/PIERC10083011
https://doi.org/10.1049/el:20001238
https://doi.org/10.1016/j.optlastec.2021.107397
https://doi.org/10.1016/j.optlastec.2022.108021
https://doi.org/10.1016/j.optlastec.2021.107399
https://doi.org/10.1007/s11082-021-02772-8
https://doi.org/10.1080/09205071.2013.757853
https://doi.org/10.3390/s23167089
https://doi.org/10.1038/s41598-023-28639-4
https://doi.org/10.1109/ACCESS.2021.3140156
https://doi.org/10.1038/s41598-022-12119-2
https://doi.org/10.1007/s11277-022-09815-7
https://doi.org/10.1109/ACCESS.2021.3065441
https://doi.org/10.3390/electronics11244115
https://doi.org/10.1109/ACCESS.2022.3152802
https://doi.org/10.1109/TCSI.2023.3314621
https://doi.org/10.1080/03772063.2020.1859955
https://doi.org/10.3390/electronics12071728
https://doi.org/10.1002/mop.30428
https://doi.org/10.1109/LMWC.2016.2575006
https://doi.org/10.1109/LMWC.2016.2614977


Symmetry 2023, 15, 2149 18 of 18

58. Nie, W.; Luo, S.; Guo, Y.-X.; Fan, Y. Miniaturized rat-race coupler with harmonic suppression. IEEE Microw. Wirel. Compon. Lett.
2014, 24, 754–756. [CrossRef]

59. Wang, W.-H.; Shen, T.-M.; Huang, T.-Y.; Wu, R.-B. Miniaturized rat-race coupler with bandpass response and good stopband
rejection. In Proceedings of the 2009 IEEE MTT-S International Microwave Symposium Digest, Boston, MA, USA, 7–12 June 2009;
IEEE: Piscataway, NJ, USA, 2009.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/LMWC.2014.2350253

	Introduction 
	The Conventional 1600 MHz Quadrature Hybrid Coupler 
	Design Process of the Primitive 1600 MHz Quadrature Hybrid Coupler with T-Shaped Branches 
	Design Process of the Primitive 1600 MHz Quadrature Hybrid Coupler with T-Shaped Branches and Bended Stubs 
	Design Process of the Proposed 1600 MHz Quadrature Hybrid Coupler 
	Conclusions 
	References

