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Nowadays, tissue and organ failures resulted from injury, aging accounts, diseases or other type 

of damages is one of the most important health problems with an increasing incidence 

worldwide. Current treatments have limitations including, low graft efficiency, shortage of donor 

organs, as well as immunological problems. In this context, tissue engineering (TE) was 

introduced as a novel and versatile approach for restoring tissue/organ function using living cells, 

scaffold and bioactive (macro-)molecules. Among these, scaffold as a three-dimensional (3D) 

support material, provide physical and chemical cues for seeding cells and has an essential role 

in cell missions. Among the wide verity of scaffolding materials, natural or synthetic 

biopolymers are the most commonly biomaterials mainly due to their unique physicochemical 

and biological features. In this context, naturally occurring biological macromolecules are 

particular of interest owing to their low immunogenicity, excellent biocompatibility and 

cytocompatibility, as well as antigenicity that qualified them as popular choices for scaffolding 

applications. In this review, we highlighted the potentials of natural and synthetic polymers as 

scaffolding materials. The properties, advantages, and disadvantages of both polymer types as 

well as the current status, challenges, and recent progresses regarding the application of them as 

scaffolding biomaterials are also discussed.  

 

Keywords: Natural polymers, Synthetic polymers, Modification, Polymer blends, Scaffold, 

Tissue engineering  
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1. Introduction  

At the current time, failure of tissue and organ function resulted from injury, diseases or another 

type of damages is one of the most important health issues. Some treatment methods including, 

mechanical devices, surgical repair, drug therapy, artificial prostheses, and transplantation 

(human or xenotransplantation) have been employed in circumventing these health problems. 

However, the repair or regeneration of failed tissue/organ by these approaches are not 

satisfactory in all cases. For example, it has been well established that a damaged neuronal tissue 

does not regenerate. Because neuronal tissue did not contain any stem cells, and therefore would 

not self-regenerate [1-4]. In this context, tissue engineering (TE) is emerging as a novel and 

powerful alternative for above-mentioned approaches for repair or regeneration of a failed 

tissue/organ. This approach combines engineering, chemistry, molecular biology, as well as 

materials sciences for repairing or replacement of failed tissues/organs using living cells, 

scaffold, and signal molecules as the three key fundamental elements. Among these, the scaffold 

provides physical and chemical cues for seeding cells and has an essential role in their missions 

such as adherence, proliferation, and differentiation [5-8]. In addition, scaffolding biomaterials 

can be engineered to mobilize and present biologically active signal molecules such as cell 

homing factors and numerous growth/differentiation and mechanical signals in order to enhance 

the proliferation as well as differentiation of seeded cells and finally, to direct neo-tissue 

formation and integration [9]. 

According to the scientist's opinion, the most important question which needs to be answered 

towards a successful TE is that: What kinds of cells, bioactive (macro-)molecules, and 

biomaterials are suitable for a successful TE? Among these, in this review, we highlighted the 

importance of biomaterials in the performance of a TE followed by discussion regarding the 
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potentials of naturally occurring biological macromolecules and synthetic polymers as 

scaffolding biomaterials. The properties, advantages, and disadvantages of both polymer types, 

as well as recent progresses in the design and development of scaffolding biomaterials using both 

types of polymeric materials will be discussed extensively.  

2. Scaffolding biomaterials: Current status, challenges, and recent progresses 

It is well documented that the scaffold support and foster regenerative cell growth and plays a 

pivotal role in the performance of a TE. The scaffolding biomaterial provides temporary three 

dimensional (3D) mechanical support and mass transport to encourage cell adhesion, 

proliferation, differentiation, and finally the formation of neo-tissue [2, 10, 11]. An ideal scaffold 

should mimic the biomechanical function, topological and microstructural characteristics of the 

native extracellular matrix (ECM). For this, the scaffold must possess some properties including, 

high surface-to-volume ratio, a high degree of porosity and pore interconnection (in order to 

support cell/tissue penetration), appropriate pore size, and geometry control. In addition, other 

characteristics of a suitable scaffold can be listed as proper cell-matrix interactions, good 

mechanical properties, appropriate chemical composition, excellent biocompatibility, acceptable 

biodegradation and catabolization rates, and simple and cost-effective fabrication technology [9, 

11, 12]. Therefore, the design and development of scaffolding biomaterial are the important 

requirements of TE using implantable scaffolds. The demand for safer and more efficient 

products for biomedical applications encouraged material and polymer scientists as well as 

biologists to design and develop the novel functional and more effective biomaterials for 

scaffolding over past few decade. In this context, human origin biomaterials are the first choice 

as scaffolding biomaterials, mainly due to their superior physicochemical as well as biological 

features including, mimic the critical aspects of native ECM, provide physical and chemical cues 
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for wound healing and tissue regeneration, excellent biocompatibility, and autologous 

preparations rich in growth factors [2, 13]. These type of biomaterials is created through the 

elimination of all cellular and nuclear materials from native tissues or organs. However, the most 

important issue regarding these type of biomaterials is the limitation of sources. Among the 

alternation biomaterials for scaffolding, natural and synthetic polymers are considerable of 

interest due to their abundances as well as superior physicochemical and biological 

characteristics. 

Despite the most advantages, both polymer types have various drawbacks that limit their 

applications for developing ideal scaffolds. Various physicochemical and biological advantages 

and disadvantages of both polymer types will be discussed in the corresponding sections. 

However, some important challenging issues regarding the use of natural and synthetic polymers 

as scaffolding biomaterials are highlighted in following. 

The most important properties of natural polymers are bioactivity (that promote biological 

recognition such as proper cell adhesion and function), biocompatibility (that reduce or eliminate 

undesirable host responses), 3D geometry, tunable degradation kinetics and mechanical as well 

as solubility properties, antigenicity, non-toxic biodegradation by-products and the intrinsic 

structural resemblance to mimic the native ECM [12]. On the other hand, the most important 

disadvantages of natural polymers can be listed as generally weak mechanical strength and 

inconsistency in compositions and properties that associated with batch production due to their 

origin in living beings, rapid degradation kinetics, uncontrolled rate of hydration, resources 

limitation in some cases that lead to high cost, and microbial spoilage [14]. 
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In contrast, synthetic polymers are easily produced on a large scale and relatively low cost in the 

most cases with controlled molecular weight and functionality. Despite these important 

advantages, the main drawback of synthetic polymers that restrict their application ranges in the 

field of biomedical (e.g., regenerative medicine) is the lack of biological cues such as cell 

recognition signals (known as biocompatibility) as well as biodegradability in most cases [10]. 

The degradation by-products of some synthetic polymers such as poly(α-hydroxy esters) 

involves the acidic compounds that can alter the pH of their surrounding tissues. This pH change 

can affect cell behavior and survival and leds to adverse tissue and inflammatory reactions [15]. 

Lack of biologically active sites for binding regulatory peptides, growth factors and other 

biological signals that restrict the cells adhesion or direct phenotypic expression. Therefore, the 

design and development of the synthetic strategies for the incorporation of biologically active 

domains, define as an artificial in vivo milieu, into the synthetic polymers is necessary for 

enhance their quality as scaffolding biomaterials. In this context, co-electrospinning of synthetic 

polymers with collagen or serum coating as well as other biological modifications can enhance 

initial cell attachment and ECM deposition [16]. 

It is well documented that a single-component template does not meet the necessary 

requirements as a scaffolding biomaterial mainly due to a lack of a controlled degradation rate, a 

lack of proper mechanical properties and bioactivity, as well as a lack of the desired cell-matrix 

interactions to control gene expression, cytoskeletal structure and dynamics [17-19]. Therefore, 

modification of both natural and synthetic polymers using various chemical, physical as well as 

biological approaches or the use of multi-component biomaterials can be led to more desirable 

results [20-22]. In the following, the most important physicochemical as well as biological 

features of synthetic and natural polymers will be discussed. In addition, various strategies, as 

ACCEPTED MANUSCRIPT



A
C

C
E
P
T
E
D

 M
A
N

U
S
C

R
IP

T

 

8 

 

well as recent progresses toward the scaffolding biomaterials, possess proper physicochemical 

and biological characteristics using modification (chemical, physical, and biological), 

mineralization, crosslinking and blending approaches in the field will be highlighted.     

3. Natural polymers 

Natural polymers are generally produced by microorganisms, plants, and animals [23-25]. These 

polymers are categorized into three main classes including, polypeptides, polysaccharides, and 

polyesters [12, 24].  Early interests regarding the natural polymers are their hopeful biomedical 

applications in cosmetics and pharmaceutical industries as well as regenerative medicine. Some 

exclusive characteristics of natural polymers for biomedical applications are their extraordinarily 

elevated stability, variable/controllable solubility, superior structural design, 3D geometry, low 

immunogenicity, excellent biocompatibility and cytocompatibility, antigenicity, and often 

specific tissue/cell targeting [26, 27]. It is well documented that in comparison with semi-

synthetic or synthetic polymers, natural polymers have better performance in mimicking the 

ECM and interaction with tissues, mainly due to the high similarity with tissue surroundings 

[28]. The chemical structures of the most important members of natural polymers that applied as 

scaffolding materials in TE are shown in Schemes 1 and 2. Despite the above mentioned 

advantages and wide applicability of natural polymers, there are several drawbacks such as high 

production cost in some cases (e.g., collagen and hyaluronic acid), batch to batch variation 

mainly due to the complexity of their structure and chemical composition, complex 

macromolecular architecture and morphology, uncontrolled rate of hydration, resources 

limitation, and possibility of microbial spoilage which may restrict their applications in TE [29]. 

In some cases, natural polymers suffer from poor processability (e.g., cellulose and chitosan), 

and low mechanical properties (e.g., polypeptides). Furthermore, degradation and catabolization 

ACCEPTED MANUSCRIPT



A
C

C
E
P
T
E
D

 M
A
N

U
S
C

R
IP

T

 

9 

 

rate of some naturally fabricated scaffold is higher in comparison with the regeneration rate of 

the host tissue in large part due to their low stability. Considering these thematic issues, 

manipulating of the architecture and functionality of the natural polymers could open new 

opportunities toward biomaterials with appropriate degradation, mechanical, structural and 

composition properties that qualify them for various successful TE [30]. In this context, some 

strategies such as chemical modification of natural polymers [22], preparation of polymeric 

blends using synthetic or semi-synthetic polymers [31], crosslinking [32], and physical 

modification [33] have been proposed to solve above mentioned problems. These strategies will 

be discussed in the following sections. 
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Scheme 1. The important members of polysaccharides have been applied as scaffolding 

materials. 
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Scheme 2. The chemical structures of gelatin and silk fibroin as scaffolding polypeptides. 

 

3.1. Chemical modification of natural polymers 

Chemical modification of natural polymers can be considered as an efficient and powerful tool 

toward improving the physicochemical, mechanical as well as biological characteristics of these 

polymers [34, 35]. In general, chemical modification is carried out through the functionalities 

(e.g., amine and hydroxyl groups) at the polymer backbone. This type of modification can be 

achieved through various approaches including, polymer grafting [36], small molecules attaching 

[37], as well as some chemical reactions such as esterification, etherification, silylation, 

quaternization, acetylation, oxidation, and alkylation [38]. Among the above-mentioned 
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approaches, the polymer grafting strategy with tailored surface properties is the most attractive 

option, mainly due to inherent physicochemical as well as biological characteristics of the 

resultant copolymer [39]. This process in large part applied in the case of cellulose [40], chitosan 

[41, 42], gelatin [43], and collagen [44] toward the synthesis of more appropriate biomaterials 

for scaffolding. In general, three grafting methods including, “grafting from”, “grafting to” and 

“grafting through” have been proposed for the synthesis of natural polymers-based copolymers. 

Among these, the “grafting from” is the most commonly used approach toward the synthesis of 

natural polymers-based copolymers using a macroinitiator [45]. In this context, the “grafting 

from” approach using reversible-deactivation radical polymerization (RDRP) is great of interest. 

This polymerization technique is divided into three main categories including:  

a) Nitroxide-mediated radical polymerization (NMRP) [46-48] 

b) Reversible addition of fragmentation chain transfer (RAFT) polymerization [49-51]  

c) Atom transfer radical polymerization (ATRP) [52-54].  

These polymerization approaches have been developed toward the synthesis of copolymers with 

controlled molecular weight, narrow dispersity, and complex macromolecular architectures. 

Among these, ATRP and RAFT are the most popular, and NMRP is the least employed approach 

toward the synthesis of natural polymers-based copolymers [45].  

As mentioned, the surface properties of natural polymers can be engineered through the synthesis 

of copolymers. For instance, grafting of poly(lactic-co-glycolic acid) (PLGA) onto chitosan 

improves its mucoadhesive potential [55, 56]. The PEGylation of chitosan have been affects the 

mucoadhesive potential of chitosan, too [57]. It is well documented that the PEGylation 

improves the toxicity profile of natural polymers, while affects the epithelial tight junctions and 

increases permeability [58-60]. The PEGylating of cellulose improves its tensile strength and 
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biocompatibility during TE [61]. Some other fabricated biomaterials through the grafting of 

synthetic polymers onto naturally occurring macromolecules are listed in Table 1. 

 

Table 1. Some examples of biomaterials fabricated through the grafting of synthetic polymers 

onto naturally occurring macromolecules.   

Composition Target TE Fabrication method Form of scaffold In vitro main findings References 

PLGA-collagen Ligament Forming collagen 
microsponges in the 
openings of a PLGA-
knitted mesh 

Sponge-like Causes ligament 
regeneration  

[62] 

Alginate/gelatin 
modified PLGA 

- Surface entrapment 
and entrapment-graft 

Electrospun 
nanofiber 

Exhibits better 
biocompatibility 

[63] 

Gelatin/N-
maleic acyl-
chitosan grafted 
PLA 

Vascular 
grafting 

Photoinitiation Microstructures 
with a smooth 
surface  

Enhances HUVEC 
spreading and 
flattening 

[64] 

Chitosan/PLGA - Chitosan grafted onto 
surface of PLGA 

Electrospun 
nanofiber 

- [56] 

Gelatin-
modified 
sodium 
alginate/gelatin-
modified PLGA 

- Surface entrapment 
and entrapment-graft 

Electrospun 
nanofiber 

- [63] 

Hyaluronic 
acid/PHEMA  

Lung TE Grafting Copolymer film Supports alveolar cell 
adhesion and growth 

[65] 

PCL-graft-
collagen 

- Polyesterification - Enhances spindle-like 
morphology, spreading 
homogeneously of 
fibroblasts 

[66] 

PCL-graft-
collagen 

Tendon 
TE 

Polyesterification Spongy films Supports cell adhesion 
and proliferation 

[67] 

PLA: poly(D, L-lactide), HUVEC: human umbilical vein endothelial cell, PHEMA: poly(2-hydroxyethyl 

methacrylate), PCL: poly(ε-caprolactone) 

  

3.2. Natural polymers-based blends  
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3.2.1. Combination of two or more natural polymers  

Polymer blends refer to a polymeric martial composed of at least two polymers, which resulted 

to enhanced physicochemical features compared than those of distinct polymer [68]. In a blend, 

each polymer holds its specific physicochemical and biological properties. These materials 

possess enhanced strength and stiffness while show low density and loosed weight compared 

with those of polymer used alone [22]. However, the main drawback of bulk natural polymer, 

which demands development of blends is their low mechanical performance and high sensitivity 

to an environmental condition such as humidity and temperature [22]. 

In general, polymer blends are categorized into two classes as either miscible or immiscible 

blends, depending on the interactional behavior of the polymers that constitute the blend. 

Miscible blends have similar properties that are comparable to random copolymers or 

homopolymers. In contrast, immiscible blends have multiple glass transition temperatures (Tg) 

owing to the distinct separation between the constituent polymers [69]. To solve this problem in 

immiscible blends, the use of compatibilizer can be considered as an effective strategy due to 

reducing interfacial tension and subsequently increasing the interactional forces between the 

constituent polymers [70]. 

Some strategies including, physical blending (e.g., melt or solvent processing), freeze drying, 

and electrospinning can be employed for the preparation of natural polymers-based blends [20]. 

However, melt processing is not suitable approach in the case of some natural polymers 

(especially proteins), because the high temperature can lead to denaturation and degradation of 

such biopolymers [71]. Among these, co-electrospinning of natural polymers to afford 

nanofibrous scaffolds is particular of interest, mainly due to inherent characteristics of the final 

scaffold as listed at the following: 
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a) Similar morphology to the human native ECM 

b) Porous network with the high surface area and interconnectivity  

c) Ultra-thin continuous fibers (ranging from 5 to 500 nm)  

d) The adjustable pore size distribution 

e) Simplicity, scalability, and more cost-effectivity 

f) Applicability for both organic and inorganic materials [72]. 

According to the mentioned features, these types of scaffolds meet the most requirements toward 

a successful TE.  

Numerous blends through the combination of two or more natural polymers have been developed 

and used for scaffolding due to their appropriate physicochemical as well as biological features. 

For example, Lin et al. fabricated a blend of keratin/chitosan (CS) which holds the bioactivity 

advantages of keratin and enhanced physiochemical characteristics of CS for TE [73]. Studies 

showed that the thermal stability, physical features and cross-linked properties of the sponge 

deduced from a blend of silk fibroin/CS polymers are better than that for sponge made of pure 

silk fibroin or pure CS [74].  

It is well documented that in bone TE, a blend of gelatin and collagen play an important role to 

accelerate the formation of apatite layer on the bio-blend films indicating their role as apatite 

nucleation inducer [75]. In addition, in bone TE, a poor interaction exists between 

hydroxyapatite (HA) and CS phases so that the HA/CS blend scaffold has poor physicochemical 

properties. In this context, a blend of CS and carboxymethyl cellulose (CMC) could be a good 

solution for the issue during bone TE. CMC is a natural biodegradable and biocompatible 

anionic polymer and is very similar to CS in structure, thus, there is strong ionic crosslinking 

action between CMC, CS and thus HA [76]. Fibronectin, a polypeptide, can promote cell 
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adhesion, and CS is known for its ability to promote differentiation of stem cells to several 

lineages. Therefore, the combination of mentioned natural polymers leds to more effective 

scaffolding biomaterial [77, 78]. 

In conclusion, the blending of two or more naturally occurring polymers is an efficient and 

versatile strategy for production of biomaterials with synergic physicochemical as well as 

biological features that qualified them toward a successful TE. Some examples of biomaterials 

fabricated through the combination of two or more natural polymers for scaffolding is 

summarized in Table 2.   

 

Table 2. Some examples of biomaterials fabricated through the combination of two or more 

natural polymers for scaffolding.  

Composition Target TE Fabrication method Form of scaffold In vitro main findings References 

Cellulose/gelatin 
scaffold loaded 
with VEGF-silk 
fibroin 
nanoparticles 

Skin TE Lyophilizing The porous 
composite 
containing VEGF-
nanoparticles with 
an average pore 
size of 171 ± 71 
μm 

Improves cell 
proliferation and 
viability in vitro and 
promotes vessel blood 
formation in vivo 

[79] 

CMC/silk fibroin Bone TE Free liquid surface 
electrospinning 

Electrospun 
nanofiber 

Improves osteoblastic 
differentiation hMSCs 

[80] 

Gelatin/carboxyme
thyl chitosan/nano-
HA 

Bone TE High stirring induced 
foaming of composite 
followed by freeze 
drying 

Macroporous 
composite 

Increases the viability, 
proliferation, and 
differentiation as well 
as induces 
mineralization of 
differentiated 
HwjhMSC-MT 

[81] 

Gabapentin-loaded 
cellulose 
acetate/gelatin 

Neural TE Wet-electrospinning Electrospun 
nanofiber 

Enhances the 
regeneration of sciatic 
nerve defect in vivo 

[82] 

Gelatin/bacterial 
cellulose 

- Freeze-drying and 
thermal cross-linking  

Spongy Enhances Vero cell 
proliferation 

[83] 

Silk fibroin/ 
CS/gelatin 

Bone TE Chemical cross-
linking and freeze-

Spongy Enhances MC3T3-E1 
cells biocompatibility 

[84] 
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drying and induces 
osteogenesis 

 
Silk fibroin/gelatin Cartilage 

regeneration 
Gelation and 3D 
printing 

Square Prism Shows superior 
performance for 
cartilage repair in a 
knee joint 

[85] 

Silk fibroin/gelatin Small 
diameter 
blood vessel 
regeneration 

Crosslinking using a 
Michael-type 
addition reaction 
followed by 
electrospinning 

Electrospun 
nanofiber 

Improves viability and 
spread morphology of 
L929 fibroblasts  

[86] 

Silk 
fibroin/collagen 

- Blending Cell encapsulated 
hydrogels 

Provides a 
biocompatible matrix 
for cell proliferation 
and differentiation  

[87] 

(hMSCs): Human mesenchymal stem cells, HwjhMSC-MT: Human Wharton's jelly MSC micro-tissue 

 

3.2.2. Combination of natural and synthetic polymers  

In comparison with natural polymers, synthetic polymers have good mechanical properties and 

thermal stability. However, the most important concern regarding the synthetic polymers is their 

biological aspects (e.g., biocompatibility and biodegradability) [10]. According to these facts, the 

blending of natural and synthetic polymers can produce a new class of biomaterials due to 

specific properties of both polymer types. These blends have been called bio-artificial or bio-

synthetic polymeric materials [10]. 

So, some types of biocompatible synthetic polymers such as poly(vinyl alcohol) (PVA) and 

thermoplastic polyurethane (TPU) may enhance the mechanical properties of obtained blends, 

which candidate them for a successful TE [88]. Poly(ε-caprolactone) (PCL), an aliphatic and 

synthetic biodegradable polyester, is commonly used polymer in combination with different 

natural polymers such as starch, gelatin, collagen and CS in TE, mainly due to its superior 

mechanical properties and tailorable degradation kinetics [89-93]. However, observations 
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revealed its limited cell affinity, adverse foreign body response in vivo, and lack of surface cell 

recognition sites [94]. On the other hand, gelatin is a natural polymer which widely used in 

different aspects of TE. The hydrophilic gelatin shows biological recognition, low 

immunogenicity, and antigenicity. However, the main drawbacks are weak mechanical strength 

and rapid degradability. Obviously, the combination of gelatin and PCL is an efficient attitude to 

overcome shortcomings of each polymer in TE [95]. Well as, the collagen and elastin (the 

primary structural components of the ECM in vascular tissues) have been used for fabrication of 

scaffolds toward vascular grafting [96, 97]. Although the resulted scaffolds enhance the cell 

adhesion, proliferation and successful cell migration, however, fail to achieve desired mechanical 

features, integrated and swelled structure. Some evidences showed that the blending of collagen 

with PCL or poly(L-lactide-co-ε-caprolactone) (PLCL) enhances the physical characteristics of 

resulted scaffold in comparison with neat collagen [98]. Moreover, blending of CS with PCL 

combines the biological affinity of the CS (e.g., facilitation of cell adhesion and proliferation, 

providing hydrophilicity and cell recognition sites, and also the establishment of a porous 

structure) and physicochemical features of PCL (e.g., enhancing the mechanical properties) [99].  

PVA is another important synthetic polymer that used in scaffolding to prepare polymer-bioglass 

sol colloid system. Some studies reported its biocompatibility and wide usage in the successful 

development of controlled delivery systems and TE [100-102]. However, various investigations 

suggested that the PVA possess limited ability to integrate into the living tissue [103]. Silk 

fibroin (SF) has been used extensively in combination with PVA and other synthetic polymers 

for development of scaffolds in large part due to its superior biocompatibility, tunable 

mechanical property, biodegradability, less inflammatory property, and enhancement of 

biological properties of PVA [104-106].  
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PLGA is an FDA approved synthetic polymer that widely used as scaffolding material, mainly 

due to the acceptable mechanical properties, good biocompatibility, amendable biodegradability, 

and generating biocompatible products resulted from physical degradation and biological 

catabolism [107, 108]. However, its polyester surface is hydrophilic, and lack of functional 

group that limits its interactions with cell surfaces and decreases its tunability as scaffolding 

materials in fruitful TE [16, 109, 110]. These thematic issues can be solved through its blending 

with natural polymers (e.g., collagen and gelatin) using electrospinning process. The resultant 

biomaterials enhance the surface roughness, hydrophilicity and cell adhesion tendency [16]. 

Table 3 summarizes some examples of biomaterials fabricated through the combination of 

natural and synthetic polymers for scaffolding. 

 

Table 3. Some examples of biomaterials fabricated through the combination of natural and 

synthetic polymers for scaffolding.  

Composition Target TE Fabrication method Form of scaffold In vitro main findings References 

PCL/silk fibroin Bone TE Electrospinning Electrospun 
nanofiber 

Has acceptable 
biocompatibility 

[111] 

Spider silk 
protein/PCL/gel
atin 

Small 
caliber 
vascular 
TE 

Electrospinning Electrospun 
nanofiber 

Exhibits better blood 
and tissue compatibility 

[19] 

PCL/antheraea 
pernyi silk 

Oriented 
tissues TE 

Electrospinning Electrospun 
nanofiber 

Support PC12 neuron-
like cell growth and 
guide neurite 
outgrowth 

[18] 

PCL or P3Hb 
nanofibers 
combined with 
silk 

Ligament 
TE 

Electrospinning Electrospun 
nanofiber 

Enhanced 
cytocompatibility 

[112] 

PCL/silk 
fibroin/collagen 

Urethral 
TE 

Electrospinning Electrospun 
nanofiber 

Enhanced 
cytocompatibility 

[17] 

PCL/gelatin - Electrospinning Electrospun 
nanofiber 

Enhances mesenchymal 
stem cell attachment, 
spreading, and 

[113] 
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cytoskeleton 
organization 

PCL/gelatin Vascular 
TE 

Electrospinning and 
photocrosslinking 
under UV 

Electrospun 
nanofiber 

- [114] 

PLGA/gelatin Neural TE Freeze casting and 
freeze drying 

A unidirectional 
microstructure 
with a number of 
random pores 

Improves P19 cell 
differentiation 

[115] 

PLGA/collagen Skin TE Coating, and 
electrospinning 

Electrospun 
nanofiber 

Enhanced 
cytocompatibility 

[16] 

Collagen/PLA, 
CS/PLA, and 
collagen/CS/PL
A 

Cartilage 
TE 

Combining of freeze-
dried natural 
components and 
synthetic PLA mesh 

Spongy/ nanofiber  Enhanced 
cytocompatibility and 
cell penetration 
capability 

[116] 

3.2.3. Mineralization 

During the bone remodeling, there are clear evidences that created osteoblasts secret osteoid in 

the site of bone regeneration, which is eventually mineralized into new bone. It seems that many 

factors such as osteoclast and osteoblast products, the extracellular levels of Pi and PPi, 

hormones, circulating factors in the site of bone remodeling can expose remarkable effects on the 

bone regeneration. Therefore, it looks that the mineralizing polymer surfaces by the 

incorporation of inorganic materials such as hydroxyapatite (HA), bio-silica, metalloenzymes 

(e.g., alkaline phosphatase; ALP), and bioactive glasses is an effective approach for improving 

the mechanical as well as biological (e.g., protein adsorption and subsequent cell adhesion) 

features of the final scaffold in hard TE (Figure 1). In addition, this approach may be lead to the 

sustained release of growth factors and genes [117-119]. Among these, calcium phosphates 

(CaPs) are particular of interest due to their abilities to mimic the inorganic components of hard 

tissues. In addition, CaPs have some other superior properties including, porosity, small particle 

size, and chemical composition or mineral frame [120]. However, CaPs have some problems 

such as poor mechanical strength and low macroporosity. This problem can be solved by the 

reinforcing of CaPs using biodegradable natural or synthetic polymers that lead to composites 
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containing continuous CaP with a dispersed polymer component [119]. For example, 

mineralization of collagen using CaP is an efficient approach for modification of 

physicochemical as well as biological features of this natural macromolecule [121, 122]. 

 

 

Figure 1. The schematic representation of bone TE and different parameters which influence the 

process.  
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This strategy has attracted tremendous interest in bone or dental TE due to promote bioactivity 

(i.e., the formation of a chemical bond with surrounding bone tissue after implantation), 

promotion of osteoblastic differentiation through increased stiffness, and enhanced binding of 

growth factors that stimulate bone healing [123-125]. Dhand and colleagues [126] reported the 

bio-inspired fabrication of bone-like composite structures by electrospinning of collagen 

containing catecholamines and Ca2+. This strategy enhances mechanical properties of collagen. 

In addition, it was found that human fetal osteoblasts seeded on the fabricated scaffolds display 

enhanced cell adhesion, proliferation, penetration, differentiation and osteogenic expression of 

osteocalcin, osteopontin and bone matrix protein when compared to pristine collagen or tissue 

culture plates. Table 4 summarizes some examples of mineralized natural polymers for 

scaffolding in hard TE. 

 

Table 4. Some examples of mineralized natural polymers for scaffolding in hard TE.  

Composition  Fabrication method Form of 

scaffold 

In vitro main 

findings 

References 

Gelatin/carboxymethyl 
chitosan/nano-HA 

High stirring 
induced foaming of 
scaffold followed 
by freeze drying 

3D 
macroporous 
scaffold 

Increases the 
percentage of 
viability, 
proliferation, and 
differentiation as 
well as higher 
mineralization of 
differentiated 
human Wharton's 
jelly MSC 
microtissue 
(wjhMSC-MT) 

[81] 

Gelatin/HA Crosslinking and 
electrospinning 

Electrospun 
nanofiber 

Enhances cell 
proliferation  

[127] 

Collagen-coated PLGA-HA Combination of 
blending and 
coating strategies 

Porous 
microparticles 

Promotes the 
repair of skull 
defect 

[128] 

Insulin-loaded nano- Blending Spongy and Possesses [129] 
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HA/collagen/PLGA composite microspores 
scaffold 

favorable 
biological 
function for bone 
marrow 
mesenchymal 
stem cells 
adhesion and 
proliferation, as 
well as the 
differentiation 
into osteoblasts 

CS/nano-HA/nano-zirconium 
dioxide 

Freeze-drying Scaffold with 
interconnected 
pores 
(spongy) 

Promotes 
osteoblast 
differentiation 

[130] 

CS/HA containing simvastatin 
(SIM)-loaded PLGA 
microspheres 

The freeze-drying 
technique with a 
modified water-oil-
water emulsion 

Interconnected 
microporous 
scaffold 

Promotes cell 
proliferation and 
induces 
osteogenic 
differentiation 

[131] 

Silk fibroin/CS/nano-HA Crosslinking/freeze 
drying 

Scaffold with 
interconnected 
pores 
(spongy) 

Enhances rabbit 
radial bone 
defect 

 

[132] 

Alginate/hydroxyethyl 
cellulose/HA 

Lyophilization Scaffold with 
interconnected 
pores 
(spongy) 

Increases human 
mesenchymal 
stem cells 
population 

[133] 

Cellulose/nano-HA Electrospinning Electrospun 
nanofiber 

Enhanced 
cytocompatibility 

[134] 

Cellulose nanocrystals 
reinforced xanthan gum 
(XG)/silica glass (SG) 

Freeze drying  Highly porous 
scaffold 

Enhanced 
cytocompatibility 

[135] 

PVA and collagen incorporated 
with zeolite and silica NPs 

Electrospinning Electrospun 
nanofiber 

Enhances 
chondrocyte cell 
proliferation 

[136] 

Silica-hybridized collagen The sol-gel process Hydrogel Enhanced cell 
proliferation and 
possesses 
promoted cell 
adherence 
properties  

[137] 

Silica/apatite co-mineralized 
collagen 

Surface coating 
through incubation 
and solvent 
processing 

Cross-linked 
microparticles 

Inhibits 
differentiation of 
RAW 264.7 cells 
into 

[138] 
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multinucleated 
osteoclasts and 
reduces the 
osteoclast 
function 

Calcium phosphate/bioactive 
glass composite 
chitosan/collagen 

Immersing the 
inorganic phases of 
three different 
calcium phosphate 
mixing bioactive 
glass (BG) with 
PCL as a binder in 
an organic phase of 
chitosan/collagen 
matrix and final 
freeze drying 

Porous 
scaffold 

Promotes 
osteoblast 
attachment and 
proliferation  

[139] 

Gelatin/chitosan/bioactive glass Blending/immersing 
the inorganic phase 
I organic phase and 
final freeze drying 

Spongy Enhances 
angiogenesis and 
cell growth 

[140] 

 

3.3. Crosslinking strategy   

In the case of some natural polymers, especially polypeptides, crosslinking strategy is the first 

choice toward the modified corresponding polymer [141, 142]. Crosslinking is a process that 

connects the functional groups of a polymer chain to another one through covalent bonding or 

supramolecular interactions (e.g., hydrogen bonding and ionic interactions). The intense interest 

in the application of this strategy is originated from its simplicity, effectiveness, and cost 

benefits. Crosslinking leads to some satisfactory improvements in mechanical properties and 

aqueous stability [32, 143]. However, degradability and accessibility to functional groups and 

their degradation rate may be decreased in the cross-linked polymers. In addition, changes in 

functionality and rheology, as well as increase cytotoxicity are the other disadvantages of this 

strategy [143]. 
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In general, crosslinking techniques can be divided into three main categories including, 

chemical, physicals, and enzymatic approaches [144, 145]. In the chemical crosslinking, 

polymeric chains are attached together by covalent bonds. These type of materials are stable and 

cannot be dissolved in any solvents [146]. Chemical crosslinking may be achieved using both 

small molecules (e.g., glutaraldehyde) and macromolecules (e.g., poly(carboxylic acids)). 

Glutaraldehyde is the most widely used agent for crosslinking of natural polymers mainly due to 

its inherent characteristics including, reaction with various functional groups (e.g., amine and 

hydroxyl), and capable to provide materials with substantial improvement in mechanical 

properties [145, 147, 148]. However, the glutaraldehyde-crosslinked materials showed 

cytotoxicity in some cases [149]. According to this, green chemicals and more efficient 

crosslinking approaches are necessary to obtain biomaterials with proper physicochemical as 

well as biological features for biomedical applications. Some of the undesirable outcomes of 

chemical crosslinking can be solved through the physical approaches. Various approaches such 

as ionic and hydrogen interactions may be used toward physical crosslinking of natural 

polymers. For example, collagen can be cross-linked by a combination of glucose and UV 

irradiation through the UV-generated free radicals. This approach improves the mechanical 

properties and decreases enzymatic degradation of collagen [150]. Another most important case 

of physical crosslinking is the crosslinking of alginate using divalent cations such as calcium 

(Ca2+). In addition, blending of starch/CMC [151], gelatin/agar [152], and hyaluronic 

acid/methylcellulose [153] form physically cross-linked and injectable gel-like structures. 

Enzyme-catalyzed crosslinking is a relatively new and efficient approach that attracted more 

attention due to its superior features including, excellent crosslinking efficiency, short reaction 

time, mild reaction conditions and high biocompatibility. This approach is suitable for in-situ 
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gelation systems [154]. More recently, transglutaminases (TGase; protein glutamine gamma-

glutamyltransferase) [155], and horseradish peroxidase (HRP)/hydrogen peroxide (H2O2) [156] 

have been used as enzymatic agents for fabrication of different types of scaffolds. Some other 

examples of cross-linked natural polymers for scaffolding are listed in Table 5.  

 

 

 

Table 5. Some examples of cross-linked natural polymers for scaffolding.  

Composition  Target TE Fabrication method Form of scaffold In vitro main findings References 

Collagen  Tendon TE Lysyl oxidase-
mediated collagen 
crosslinking 

Spongy - [157] 

Collagen/glycosa
minoglycan 
(GAG ) 

Bone TE Dehydrothermal 
(DHT) crosslinking 

Spongy Enhances cell number 
and cell metabolic 
activity 

[158] 

Gelatin/HA Bone TE Co-precipitation of 
hydroxyapatite within 
gelatin solution 
followed 
by freeze-drying  

Spongy Enhances cell 
attachments and 
proliferation 

[159] 

Bovine HA/ 
gelatin/CS 

Bone TE Crosslinking by 
glutaraldehyde 

Microporous 
spongy 

Possess good cell 
adhesion behavior  

[160] 

CS/gelatin Liver TE Crosslinking by 
natural genipin 

Microporous 
spongy 

Enhances cell 
proliferation and tissue 
penetration 

[161] 

CS  Cartilage TE Hydrothermal 
crosslinking 
(autoclaving)  

Interconnected and 
microporous 
scaffold 

Improves cell adhesion 
and proliferation 

[162] 

Silk fibroin 
microfibers and 
CS modified poly 
(glycerol 
sebacate) 

Skin TE Particulate leaching 
and freeze-drying 

Interconnected and 
open porous 
scaffold 

Enhances cells 
attachment, 
proliferation, and deep 
penetration into 
artificial tissue 

[163] 

 

3.4. Physical modification  
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The physical modification is an efficient and safe approach for improvement of physicochemical 

as well as biological features of natural polymers. This modification technique is simple, cheap, 

and safe because requires no chemicals or biological agents. Various approaches including 

hydrothermal, corona electrical discharges, radiation technique (e.g., UV, gamma-ray, and laser 

irradiation), pressure, shear, steam treatment, plasma treatment, electron beam treatments, and 

flame treatment may be applied for physical modification depending on the type of natural 

polymer [164]. This modification approach is extensively applied to starch [165] and cellulose 

[166] as the most abundant organic compounds in nature. 

4. Synthetic polymers 

Synthetic polymers can be easily produced on a large scale and low cost with controlled 

molecular weight and functionality. However, the main drawback of synthetic polymers in the 

field of biomedical applications (e.g., regenerative medicine) is the lack of biological cues such 

as cell recognition signals (known as biocompatibility) as well as biodegradability in most cases. 

Some synthetic polymers such as PCL [167, 168], poly(glycolic acid) (PGA) [169], PLA [170], 

PLGA [108], PVA [171], PHEMA [172], poly(dimethylsiloxane) (PDMS) [173], and poly(N-

isopropylacrylamide) (PNIPAAm) [174] have been extensively applied as scaffolding material. 

The chemical structures of these polymers are shown in Scheme 3.  

The most important advantages of these polymers are divided into two properties as follows: 

1) The structure and chemical composition of these polymers can be easily tailored to afford 

desired physicochemical features that qualified them for successful TE. 

2) These synthetic polymers are generally subjected to biodegradation because of the 

susceptibility of their aliphatic ester linkage to hydrolysis or via activities of esterase 

enzymes secreted by cells [11].  
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Despite above advantages, as mentioned earlier, the most important drawback of these polymers 

is biocompatibility. Considering this fact, these polymers should be modified before their 

application as biomaterials for scaffolding. Some modification approaches are discussed in the 

following. 
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Scheme 3. The chemical structure of some synthetic polymers that applied for scaffolding. 

 

4.1. Chemical modification 
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In general, the developed approaches for surface modification of synthetic polymers improve 

their hydrophilicity, biocompatibility, vascularization and surface density of functional groups in 

order to immobilization of biomolecules for TE [175-177]. The first option for this purpose is 

engineering the functionality of these polymers through the attaching of small- or macro-

molecules [178]. This strategy improves the hydrophilicity and surface charge of the biomaterial 

and leads to favorable cell adhesion [179, 180].  

In this context, aliphatic polyesters such as PLA, PLGA, PCL, and PGA are the most important 

categories of synthetic polymers for scaffolding. These polyesters are synthesized through ring-

opening polymerization (ROP) of the corresponding monomer [181, 182]. In addition, some 

polyesters such as poly(butylene succinate) (PBS) can be produced by polycondensation of 

diacid and diols. In comparison with ROP approach, polycondensation does not require strict 

reaction conditions and has been utilized for industrial mass production [183].  

However, slow degradation rate, lack of natural recognition sites, and hydrophobicity are the 

most important disadvantages of these polymers [184]. Therefore, modification of these 

polymers is pivotal for TE applications in order to ideally adjust cell/tissue biological functions. 

In this context, two main approaches including, pre-functionalization and post-functionalization 

approaches have been introduced toward modified polyesters. These approaches have been 

extensively reviewed elsewhere [183, 185]. Due to the importance and extensively usage of 

aliphatic polyesters as scaffolding biomaterials, some features of PLA and PCL are discussed in 

the following.  

PCL is a biodegradable aliphatic linear polyester with semi-crystalline properties that gain the 

approval of FDA. The most important advantages of PCL are hydrolytic degradation through the 

cleavage of the ester linkages and formation of monomeric caproic acid, biodegradability, 
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biocompatibility, and bio-resorbability [186]. However, the biomedical applications of PCL 

might be limited mainly due to its high crystallinity and slow degradation rate [187]. An efficient 

and versatile approach to overcome these defects is its chemical modification using various 

approaches. In this respect, the most important plausible chemical strategies to upgrade the 

properties of PCL are hydrolysis using sodium hydroxide (NaOH) [188], aminolysis [188, 189], 

as well as polymer grafting [190, 191].  

PLA is another synthetic thermoplastic polyester that extensively used for biomedical 

applications. PLA has some superior physicochemical as well as biological features as follows:  

a) Excellent biocompatibility and biodegradability 

b) Eco-friendly property (derived from renewable resources such as corn, wheat, or rice) 

c) Excellent thermal processability in comparison with other synthetic polymers (e.g., PEG 

and PCL) 

d) Less production energy than those of the petroleum-based polymers (approximately 25–

55%) [192-194]. 

However, poor toughness, lack of natural recognition sites, slow degradation rate, and 

hydrophobicity are the most important disadvantages of PLA. In this context, copolymerization 

of lactic acid with other monomers through polycondensation or ring-opening copolymerization 

is the most important chemical modification approach [192]. Another efficient strategy is the 

synthesis of PEG and PLA copolymer (PLE). These copolymers can be synthesized through both 

ring-opening polymerization of lactide using PEG as macroinitiator or polyesterification 

approaches [195, 196]. Copolymerization of PEG with lactide can modulate the biodegradation 

rate, the hydrophilicity, as well as mechanical properties in comparison with PLA homopolymer 
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[196]. At the end of this section, some examples of chemically modified synthetic polymers for 

scaffolding is summarized in Table 6.   

 

 

 

 

 

Table 6. Some examples of chemically modified synthetic polymers for scaffolding.  

Composition  Target TE Modification Approach Form of scaffold In vitro main findings References 

PCL - Surface modified via 
aminolysis 

Film scaffold Improves the cell 
attachment and 
proliferation 

[197] 

PCL Peripheral 
nerve TE 

Surface modified via 
hydrolysis and 
aminolysis 

Film scaffold Enhances cell 
proliferation 

[188] 

PVA  - Surface modified using 
cell-adhesive peptide 
RGDS 

Hydrogels Support the attachment 
and spreading of 
fibroblasts 

[198] 

PCL - Gamma irradiation-
induced grafting of 
acrylic acid 

Film scaffold - [199] 

PLA Neural TE Surface modified by 

epidermal growth factor 
Electrospun 
nanofiber 

Improves cell 
proliferation in the 
absence of growth 
factor 

[200] 

PLGA - Surface modified via 
hydrolysis and 
aminolysis 

Film scaffold - [201] 

PDMS - Fibronectin and 
collagen type 1 were 
grafted on the scaffold 
surface by (3- 
aminopropyl)triethoxy 
silane (APTES) and 
crosslinking using 
glutaraldehyde (GA)  

Film scaffold Enhances the 
adhesion and 
proliferation of 
mesenchymal stem 
cells 

[202] 

Hyperbranched 
aliphatic 

- Grafting of 
polythiophene (PTh) 

Electrospun 
nanofiber 

Improves the cell 
attachment and 

[203] 
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polyester (HAP) onto HAP and blending 
with PCL 

proliferation 

PEG Bone TE Grafting of PTh onto 
PEG and blending with 
PCL 

Electrospun 
nanofiber 

Improves the cell 
attachment and 
proliferation 

[204] 

PVA - Oxidized Hydrogel Don’t elicit severe 
inflammatory reactions 
in vivo 

[205] 

Polyurethane 
(PU) 

- Modified by acrylamide 
using plasma radiation 

Film scaffold Improves the cell 
proliferation 

[206] 

 

 

4.2. Surface engineering using physical approaches  

The surface characteristics of biomaterials including, stiffness, roughness, and topography that 

influence the cell adhesion and proliferation can be easily manipulated in synthetic polymers 

[207, 208]. In general, physical approaches introduce oxygen-containing functional groups onto 

polymer surfaces, in order to improve adhesion and wettability that have important roles in TE. 

The most important physical approaches include radiation-induced surface modification (UV, 

gamma-ray, and laser irradiation) [209], ion beam based processes [210], vapor based coatings 

[211], plasma-assisted coating methods [212], electron beam treatments [213], flame treatment 

[214], and corona discharge treatments [215]. These approaches have some advantages over 

chemical modification as follows: 

a) A mild condition in most cases 

b) More environmental friendly due to the lack of any chemical agent 

c) No undesirable changes in the polymer surface morphology 

d) Simplicity, scalability, and more cost-effectivity (in most cases) 

e) Applicability to a huge range of synthetic polymers [209, 216]. 
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Some examples of physically modified synthetic polymers for scaffolding is summarized in 

Table 7. 

 

Table 7. Some examples of physically modified synthetic polymers for scaffolding.  

Composition  Target TE Modification Approach Form of scaffold In vitro main findings References 

PCL - Laser surface 
modification 

Film scaffold - [217] 

PCL Bone TE Plasma Modification Spongy  and 
porous scaffolds 

Increases of cell 
viability 

[218] 

PLGA Soft TE Electron 
beam irradiation 

Electrospun 
nanofiber 

Cell proliferation 
behavior 
on all electron beam 
irradiated PLGA mats 
was similar to the 
control PLGA mats 

[219] 

PCL Bone TE Physical incorporation 
of ginseng extract into 
PCL electrospun 
nanofibers 

Electrospun 
nanofiber 

Higher calcium 
content, alkaline 
phosphatase 
activity and higher 
mineralization of 
mesenchymal stem 
cells were 
observed 

[220] 

PLGA - Plasma modification Electrospun 
nanofiber 

Enhances mouse 
fibroblasts cells 
adhesion and 
proliferation 

[221] 

Polyurethane Cardiac 
TE 

Plasma mediated 
protein immobilization 

Film scaffold Enhances cell 
proliferation and 
attachments in vitro, 
and implants in rat aortic 
interposition model in 
vivo 

[222] 

PCL - Plasma mediated 
laminin protein 
immobilization 

Electrospun 
nanofiber 

Enhances cell 
adherence 

[223] 

Polyurethane - Acrylamide 
modification using 
plasma radiation 

Film scaffold Enhances cell 
proliferation and 
adherence 

[206] 

PLA - Plasma modification Electrospun 
nanofiber 

- [224] 
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4.3. Biological modification 

Despite the FDA approval support of some synthetic polymers (e.g., PCL, PLA, and PLGA), 

safety concerns regarding the use of these polymers are still remain, however, because foreign 

materials are inherently thrombogenic. The main reason for this is denaturation of proteins, 

activation of coagulation factors, propagation of thrombi, provocation of inflammatory 

responses, and accumulation of debris [225-227]. Biological modification of these polymers is an 

efficient approach for biomedical application due to enhancing the compatibility and possibility 

of interaction with complex biological environments. In this context, the most common 

approaches are a surface coating, entrapment, self-assembly, and chemical grafting [228].  

An efficient approach is bio-functionalization, in which the ECM peptide sequences promote cell 

behavior in a manner similar to fibronectin sequences (REDV, PHSRN, RGD, and GRGDSP), 

laminin-derived recognition motifs (IKLLI, IKVAV, LRE, PDSGR, RGD, YIGSR), and 

collagen type I-derived sequences (DGEA, Tenascin-C-derived peptides D5 and D50) [229]. 

These peptide ligands directly interact with cell surface receptors and improve the cell adhesion 

and differentiation processes. For example, an efficient approach for the biological modification 

of PLA is the synthesis of poly(lactic acid-co-lysine) copolymer followed by attaching a peptide 

containing an RGD sequence that led to enhanced cell adhesion [185]. This type of modification 

has been recently summarized by Balaji and co-workers [230]. Table 8 summarized some 

examples of scaffolds that fabricated by biologically modified synthetic polymers. 

 

Table 8. Some examples of biologically modified synthetic polymers for scaffolding.  

Composition  Target TE Modification agent  Form of scaffold In vitro main findings References 

PLGA - Modified by poly(l-
lysine) 

Microporous 
scaffold 

Enhances cell 
adherence and 
proliferation 

[231] 
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PDMS - Fibronectin and 
collagen type 1were 
grafted on the scaffold 
surface by (3- 
aminopropyl)triethoxy 
silane (APTES) and 
cross-linker 
glutaraldehyde (GA) 
chemistry 

Film scaffold Enhances the 
adhesion and 
proliferation of 
mesenchymal stem 
cells 

[202] 

PDMS - Fibronectin deposited 
on the polymer 

Film scaffold Enhances cell behavior 
and candidates it 
for replication of a 
native 3D environment 

[232] 

Poly(amino 
acid) 

Bone TE Cyclic 
phosphonate 
modification 

Film scaffold Improves cell adhesion [233] 

PCL Bone TE Physical incorporation 
of ginseng extract into 
PCL electrospun 
nanofibers 

Electrospun 
nanofiber 

Higher calcium 
content, alkaline 
phosphatase 
activity and higher 
mineralization of 
mesenchymal stem 
cells were 
observed 

[220] 

PHEMA - Cholesterol-modified 
and laminin deposition 

Hydrogel Facilitates 
mesenchymal stem 
cells 
attachment, but does 
not support cell 
spreading and 
proliferation 

[234] 

PCL - Modified by fusion 
protein VEGF-HGFI 

Electrospun 
nanofiber 

Enhances 
cellularization and 
Vascularization in vivo 

[235] 

PLA - Grafting collagen Electrospun 
nanofiber 

Enhances cell adhesion 
and cell spreading 

[44] 

PCL Bone TE Heparin-immobilized Electrospun 
nanofiber 

Decreases the initial 
cell viability of 
mesenchymal stem 
cells and enhances 
bone morphogenetic 
protein-2 release  into 
the scaffold 

[236] 
 

Composite of 
PLGA and 
PLA-grafted 

Bone TE RGD-conjugated Porous scaffolds Enhances bone 
ingrowth 

[237] 
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nano-HA 
 

 

4.4. Polymer blends  

4.4.1. Combination of two or more synthetic polymers  

The blending of two or more synthetic polymers is an effective strategy for the development of 

biomaterials with synergic physicochemical as well as biological features. The most common 

approaches for the preparation of these blends are solvent and melt processing [238, 239]. Melt 

processing is a versatile method for preparing polymeric blend scaffolds with 100% 

interconnected 3D microstructures. However, the blending ratio and the post-annealing process 

are affected significantly the pore size and porosity of the resultant scaffold [240, 241]. Besides 

melt processing, some strategies such as solid-state gas foaming, the pore size and porosity of the 

scaffold can be easily controlled by adjusting the gas foaming parameters [240].   

In a successful attempt, Kim and co-works [225] fabricated a blend of poly[2-

methacryloyloxyethyl phosphorylcholine (MPC)-co-n-butyl methacrylate (BMA)] (PMB30W) 

and poly(L-lactic acid) (PLLA) through a solvent mixing and evaluated its bio-absorption 

implants after subcutaneous implantation. Compared to the PLLA tubing, the PLLA/PMB30W 

tubing significantly reduced the thrombus formation during 30 days of implantation. Human 

peripheral blood mononuclear cells were cultured on the PLLA and the PLLA/PMB30W to 

compare inflammatory reactions. Enzyme-linked immunosorbent assay quantified substantially 

decreased pro-inflammatory cytokines in the case of the PLLA/PMB30W. Some other examples 

that employed a combination of two or more synthetic polymers for scaffolding are listed in 

Table 9.  
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Table 9. Some examples of scaffolds fabricated through the combination of two or more 

synthetic polymers. 

Composition  Target TE Fabrication method Form of scaffold In vitro main findings References 

PLA-based 
blend with 
phospholipid 
polymer 

Cardiovasc
ular Stents 

Blending Film scaffold Reduces thrombotic 
occlusion in vivo and 
Inflammatory reactions 
in vitro  

[225] 

PCL/PLA - Melt blending Nanofiber Enhances cell adhesion 
and proliferation 

[242] 

PLA/polystyren
e (PSt) 

Bone TE Solid-state foaming and 
immiscible polymer 
blending 

Porous scaffold Enhances cell growth [240] 

PEG/PLA Bone TE Solvent casting and 
porogen leaching 

Porous scaffold Enhances cell growth 
 

[243] 

PCL/poly(N-
vinyl-2-
pyrrolidone) 

- Blending and 
electrospinning 

Electrospun 
nanofiber 

Improves cell 
attachment and 
spreading 

[244] 

PVA/poly(hydr
oxy butyrate) 

Skin TE Blending and 
electrospinning 

Electrospun 
nanofiber 

Promotes adhesion and 
the proliferation of 
HaCaT cells 

[245] 

PVA/Poly(vinyl
pyrrolidone) 
(PVP) 

- Blending and 
electrospinning 

Electrospun 
nanofiber 

Enhances cells 
adhesion and 
proliferation 

[246] 

PVA-co-
ethylene)/PLG
A 

- Blending by solution 
casting 

Porous scaffold - [21] 

PVA/PVP 
blends 
incorporated 
with HAp and 
β-TCP bone 
ceramic 

Hard TE Blending and 
electrospinning 

Electrospun 
nanofiber 

Supports better cell 
adhesion and 
proliferation 

[247] 

PCL/poly(ethyl
ene oxide) 
(PEO) 

Cardiovasc
ular TE 

Melt blending 3D plotted 
scaffold 

- [248] 

β-TCP: β-tricalcium phosphate  
 
 
4.4.2. Combination of synthetic and natural polymers  

The blending of synthetic and natural polymers (bio-artificial blending) is a versatile approach 

toward more efficient biomaterials with enhanced physicochemical (e.g., hydrophobicity) as well 
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as biological (e.g., biocompatibility) features. This concept has been extensively discussed above 

(Section 2.2.2).   

 

4.5. Mineralization 

Similar to natural polymers, the synthetic polymers can be also modified using mineralization 

strategy in order to improve mechanical as well as biological features of the final scaffold. Bio-

mineralization is extensively used in bone TE. In this context, HA is the major mineral 

component in a native bone ECM, and a lot of calcium phosphate coatings appear to have the 

effective promotion of bone tissue regeneration. Therefore, the growth of calcium phosphate 

materials onto the surface of polymeric materials is an efficient strategy in order to provide 

osteoconductivity and osteoinductivity [119, 249].   

Kokubo and colleagues [250, 251] developed a biomimetic process to form a calcium phosphate 

coating onto a surface modified substrate through the immersion into simulated body fluid (SBF) 

at physiological temperature, that has a composition similar to that of the human blood plasma. 

Qu and coworkers [252] studied the effect of oxygen plasma treatment on the formation of a 

bone-like apatite layer on PLGA films and scaffolds by incubation in modified SBF. The SEM 

micrographs of the scaffolds are shown in Figure 2. It was revealed that the bone-like apatite 

formability of PLGA enlarged with increasing plasma-treating time. The surface chemistry plays 

an important role in the formability of apatite, thus, many research attempts have been devoted to 

improving the interface of apatite with substrates. 
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Figure 2. SEM micrographs of untreated and oxygen plasma-treated PLGA(70/30) scaffolds 

(treated at 20W for 30 min) after incubation in 1.5SBF0 for 6 days. (a) Untreated, surface; (b) 

plasma-treated, surface; (c) untreated, cross section; (d) plasma-treated, cross section [252]. 

 

5. Electrically conductive biomaterials   

It is well documented that normal biological functions in the human body (e.g., signaling of the 

nervous system, muscle contraction, and wound healing) are needed to bioelectricity. Given this 

fact, the applying electrical stimulation (ES) through the scaffold can be modulate cellular 

activities including, cell migration, cell adhesion, cell differentiation, DNA synthesis, and protein 

secretion especially in the case of electrically excitable cells such as fibroblasts, osteoblasts, 

myoblasts, neural crest cells, and chick embryo dorsal root ganglia [253-255]. Thus, electrically 

conductive biomaterials can be considered as a potential candidate for scaffolding. These 
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materials should be biodegradable, biocompatible, and have long-term ES or electrical stability. 

In this context, some researchers attempt to prepare electrically conducting scaffolds through the 

incorporation of conductive (nano-)particles such as carbon-based materials (e.g., carbon 

nanotube [256, 257], graphene [258, 259]), and gold nanowires [260, 261] in implantable 

polymeric scaffolds. However, it is indeed admitted that these systems are non-biodegradable 

and possess long-term effects on fillers in vivo. This may cause tissue damage and aggravate 

inflammatory responses.  

In this context, other types of synthetic polymers, namely electrically conducting polymers 

(ECPs) are proposed to overcome mentioned thematic issues [203, 262]. The intense interest in 

the use of ECPs expanded greatly from the 1980s when it was found that these polymers were 

compatible with many biological systems [143]. Among these, polyaniline (PANI), polypyrrole 

(PPy), polythiophene (PTh) and their derivatives are leading candidates in part due to their cell 

and tissue compatibilities both in vitro and in vivo after chemical modification or preparation of 

their blends with natural, synthetic and semi-synthetic polymers[263-266].  

Many research groups including our laboratory fabricated electrically conductive biomaterials 

processes excellent electroactivity, biocompatibility, and biodegradability as scaffolds. Schemes 

4, 5, 6, and 7 present the structures of some chemically modified ECPs as scaffolding 

biomaterials, which fabricated by our research group. 
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Scheme 4. The chemical structure of polyester-modified PANI [262]. 
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Scheme 5. The chemical structure of polyester-modified PTh [203]. 
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Scheme 6. The chemical structure of PEG-modified PANI [6]. 
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Scheme 7. The chemical structure of PEG-modified PTh [4]. 

 

 

In addition, so many other successful research projects have been conducted and some 

convincing data have been obtained as summarized in Table 10.       
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Table 10. Some examples of PANI, PPy, and PTh-based biomaterials which has been applied in the different area of TE. 

ECPs Composition  Form of scaffold Target TE Fabrication method In vitro main findings References 

 
 

 

PANI 

3-Aminobenzoic acid-PLA  Nanofiber - Electrospinning Enhances cell growth [267] 
PCL Nanofiber Skeletal 

muscle  
Electrospinning Conductivity enhances myotube 

maturation 
[268] 

PCL/Gel Nanofiber Nerve  Electrospinning Conductivity enhances cell 
proliferation and neurite 
outgrowth 

[269] 

PCL/SF Nanofiber/hydrog
el 

Skeletal 
muscle  

Electrospinning/photo-cross-
linking 

Guides the myoblast alignment 
and differentiation 

[270] 

Amyloid nanofibers Core-shell 
nanowire 

- Template polymerization in the 
presence of amyloid nanofibers 

- [271] 

Chitin Nanofiber - Electrospinning Cytocompatible [272] 
Gel Nanofiber Cardiac  Electrospinning Stimulates the differentiation [273] 

PPY 
 
 

N-Hydroxyl succinimidyl 
ester 

- Neuronal  Electrochemical synthesis Improves neuritic network 
development 

[274] 

Neurotrophin - Neuronal  Electrosynthesis Improves neuritic network 
development 

[275] 

PCL Nanowire Neuronal  Nanotemplating technique Facilitates in vitro neural stem 
cell line adhesion, proliferation 
and differentiation 

[276] 

PCL/Gel Nanofiber Cardiac  Electrospinning Promote cell attachment, 
proliferation, interaction, and 
expression of cardiac-specific 
proteins 

[277] 

PLGA Nanofiber Neuronal  Electrospinning Supports neurite formation and 
neurite outgrowth 

[278] 

PLA Fluffy nanofiber Neuronal  Electrospinning Provides cell 3D-culture, 
improves cell growth 

[279] 

PLA/Hep Membrane Bone  Blending and solvent casting Enhances cell differentiation [280] 
PLA  Film Neuronal  Polymerization and co-

precipitation 
Supports neurite formation and 
neurite outgrowth 

[281] 
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Gel/CS graphene Porous 
nanocomposite 

Neuronal  In situ chemical oxidative 
polymerization 

Cytocompatible [282] 

Xanthan Porous film - Electropolymerization Supports cell adhesion and 
proliferation 

[283] 

PDMS Wrinkle film Neuronal  Swelling-deswelling process Promotes cell adhesion and 
neurite outgrowth 

[284] 

PTh - Films and fiber Skeletal 
muscle  

Electrospinning Enhances cell proliferation and 
myotubes differentiation 

[285] 

Poly(tetramethylene 
succinate) 

Nanomembrane - Spin-coating Enhances adhesion and 
proliferation of cells 

[286] 

Poly(tetramethylene 
succinate) 

Nanomembrane - Spin-coating Cytocompatible [287] 

- Hydrogel Skeletal 
muscle  

Covalently cross-linking Enhances adhesion and 
proliferation of cells 

[288] 

Poly(3-hydroxybutyrate-
co-valerate) 

Film - Solvent casting Less toxicity [289] 

 
2-HEC: 2-hydroxyethylcellulose; PLA: poly(lactic acid); PCL: poly(ε-caprolactone); Gel: gelatin; SF: silk fibroin; PP: polypropylene; Col type I: collagen 
type I; PU: polyurethane; PLGA: poly(lactic acid-co-glycolic acid); Hep: heparin; CS: chitosan; PDMS: poly(dimethyl siloxane) 
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6. Conclusions and future remarks 

It is an unquestionable fact that natural acellular tissues in the body (e.g., heart, kidney and 

bladder scaffold) are the best tissue scaffolds for regeneration of failed organs. However, the 

limitation of the sources is the most drawback of these scaffolds. In this context, naturally 

occurring biological macromolecules and synthetic (bio-)polymers are promising alternative 

materials for scaffolding. However, both natural and synthetic polymers have some drawbacks 

that should be solved before the application for TE. In this context, some strategies have been 

developed for improving the physicochemical as well as biological features of both polymer 

types.  

In comparison with natural polymers, synthetic biopolymers have some advantages including, 

engineerable and tunable hydrophilic/hydrophobic ratio, degradation rate and mechanical 

characteristics. Nevertheless, their main drawback is lack of biological features. Due to poor 

mechanical as well as some negative physicochemical properties (e.g., degradation rate and 

hydrophilic/hydrophobic ratio) of the most natural polymers, modification of these polymers 

seems to be necessary for the biomedical application. Thus, the design and development of new 

synthetic or semi-synthetic methodologies or physical approaches for modification of natural 

polymers to produce scaffolding biomaterials with proper physicochemical and biological 

features are necessary for further developing this context. 

It seems that in comparison with naturally occurring polysaccharides and polyesters, the animal- 

or vegetable-derived polypeptides have higher performance as scaffolding materials. In this 

context, silk fibroin, collagen, and gelatin are of particular interest mainly due to their ability to 

mimic ECM. Therefore, it is expected that more research efforts should be focused on the 

fabrication of tissue scaffolds based on polypeptides.          
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Chemical modification of natural and synthetic polymers can be considered as a powerful tool 

for improving the physicochemical, mechanical as well as biological characteristics of these 

polymers. In the case of synthetic polymers, this approach improves hydrophilicity, 

biocompatibility, vascularization and surface density of functional groups. 

Crosslinking strategy is another efficient and facile approach toward proper scaffolding 

biomaterials in the case of both natural and synthetic polymers. However, some crosslinking 

agents (e.g., glutaraldehyde) lead to increase cytotoxicity in some cases. Therefore, design and 

development of green chemicals and more efficient crosslinking approaches are necessary to 

obtain crosslinked biomaterials with appropriate physicochemical as well as biological 

characteristics for TE applications. The cytotoxicity issue can be solved through the use of 

physical and enzyme-catalyzed crosslinking approaches, and produce safer biomaterials. Despite, 

the crosslinking efficiency may be reduced in comparison with chemical crosslinking. Therefore, 

development of more efficient enzymatic crosslinking agents is required to achieve biomaterials 

with acceptable physicochemical as well as biological features.  

The blending of polymers is an additional efficient approach that can improve the 

physicochemical and mechanical features of natural polymers as well as cytocompatibility issue 

in the case of synthetic polymers. These polymeric biomaterials can be produced through the 

combination of natural polymers, natural and synthetic polymers, and synthetic polymers toward 

biomaterials with synergic physicochemical as well as biological features. In addition, these 

biomaterials are safe and without any chemical or biological contamination. 

Mineralization strategy has received more and more interest due to the synergic effects on 

mechanical as well as biological (e.g., protein adsorption and subsequent cell adhesion) features 

of the final scaffold. Furthermore, this approach may lead to the sustained release of growth 

ACCEPTED MANUSCRIPT



A
C

C
E
P
T
E
D

 M
A
N

U
S
C

R
IP

T

 

48 

 

factors and genes. This approach involves the incorporation of inorganic materials such as HA, 

bio-silica, metalloenzymes (known as alkaline phosphatase; ALP), and bioactive glasses on the 

surface of the scaffold. This strategy is extensively used in bone or dental TE. The most 

important approach toward the mineralization is the immersion of scaffold into simulated body 

fluid (SBF).  

The physical modification is a promising approach toward improving physicochemical as well as 

biological features of both natural and synthetic polymers. This modification technique is simple, 

cheap and safe, because it requires no chemical or biological agents. This approach can easily 

manipulate the stiffness, roughness, and topography of polymeric scaffold that influence the cell 

adhesion and proliferation. The most important advantages of physical modification are a mild 

condition in the most cases, more environmental friendly due to the lack of any chemical or 

biological agents, no undesirable changes in the polymer surface morphology, simplicity, 

scalability, more cost-effectivity (in most cases), and applicability for a huge range of natural or 

synthetic polymers. 

It is well established that the size of scaffold has a pivotal role in TE performance, thus it is 

expected that more research efforts focused on the design and development of nano-sized 

polymeric scaffolds besides their modifications. In these types of scaffolds, cell-materials 

interactions increased significantly in comparison with micro-structured scaffolds, and lead to 

better cell adhesion and neo-tissue formation. In this context, nanofibrous scaffolds can be 

considered as nano-sized and porous substrates that could be produced through phase separation 

and electrospinning techniques. On the other hand, native ECM is the optimized milieu, which 

nature has been developed to maintain homeostasis and to direct tissue development. Therefore, 

a considerable of research effort has been focused to imitate the native ECM to guide 
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morphogenesis during TE. In this context, some promising results have been obtained using the 

fabricated scaffolds by electrospinning technique.    

Great research efforts have been done for design and developing the smart naturally derived 

systems in last decade. The most important advantages of these systems are novel degradable 

matrix through adequate cell signals and actions, self-assembling systems that can be tuned by 

external signals, fabrication of new injectable thermogelling materials that could be used to 

deliver cells or growth factors through non-invasive approaches. In addition, stimuli-responsive 

hydrogels as scaffolds can deliver bioactive agents in response to stimuli trigger (e.g., 

temperature, pH, ionic strength or presence of specific enzymes). Despite some convincing data 

that obtained using mentioned systems, more integration of synthetic technologies and biological 

science is necessary to design and development of novel and more efficient multifunctional 

biomaterials in the future. 

It is the authors’ opinion that stem cells are the best and the first choice for a successful TE, 

mainly due to their inherent biological features including, osteogenic, self-renew and 

differentiate into neurogenic, chondrogenic, as well as myogenic lineages under appropriate 

stimuli from extracellular components. Thus, more works are needed to investigate polymeric 

materials-stem cells interaction during tissue regeneration. 

In conclusion, the promising results are available in the literature regarding the use of natural and 

synthetic polymers as well as their combinations as scaffolding biomaterials, however, many 

improvements should be made to investigate the effects of the cell types, growth factors, scaffold 

features, and other unknown physicochemical as well as biological characteristics on the fate of 

final artificial tissues in a successful TE. 
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3D: three-dimensional 

ALP: alkaline phosphatase 

ATRP: atom transfer radical polymerization  

CaPs: calcium phosphates  

CMC: carboxymethyl cellulose 

CS: chitosan  

ECM: extracellular matrix  

ECPs: electrically conducting polymers 

ES: electrical stimulation  

GAG: glycosaminoglycan 

HA: hydroxyapatite 

HAP: hyperbranched aliphatic polyester 

hMSCs: human mesenchymal stem cells 

HRP: horseradish peroxidase 

HUVEC: human umbilical vein endothelial cell 

HwjhMSC-MT: human Wharton's jelly MSC micro-tissue 

NMRP: nitroxide-mediated radical polymerization 

PANI: polyaniline 

PBS: poly(butylene succinate)  

PCL: poly(ε-caprolactone) 

PDMS: poly(dimethylsiloxane)  

PEO: poly(ethylene oxide)  

PGA: poly(glycolic acid) 

PHEMA: poly(2-hydroxyethyl methacrylate) 
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PLA: poly(D, L-lactide) 

PLCL: poly(L-lactide-co-ε-caprolactone) 

PLGA: poly(lactic-co-glycolic acids)  

PLLA: poly(L-lactic acid) 

PMB30W: poly[2-methacryloyloxyethyl phosphorylcholine (MPC)-co-n-butyl methacrylate 
(BMA)]  

PNIPAAm: poly(N-isopropylacrylamide) 

PPy: polypyrrole 

PTh: polythiophene 

PU: polyurethane 

PVA: poly(vinyl alcohol)  

RAFT: reversible addition of fragmentation chain transfer 

RDRP: reversible-deactivation radical polymerization  

ROP: ring-opening polymerization 

SBF: simulated body fluid 

SF: silk fibroin 

TE: tissue engineering  

TPU: thermoplastic polyurethane 
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Graphical abstract 

 

 

This review is the first up-to-date comprehensive overview regarding the employing of natural 

and synthetic polymers or their composites as well as copolymers for scaffolding. 
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