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Abstract

In the current research, ferrofluid migration and exergy destroyed became the main goal. Demonstration of characteristics

impact of permeability, buoyancy and Hartmann numbers on variation of nanomaterial movement as well as irreversibility

was examined. CVFEM with triangular element is utilized to calculate the solution of formulated equations. An increment

in magnetic field results in greater exergy drop which is not beneficial in view of convective mode. An increase in

permeability demonstrates a growth of nanomaterial convective flow. Augmenting Da causes a reduction in Bejan number

while it makes Nuave to augment.
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Introduction

Nanofluid can be offered as an efficient carrier fluid

because of its capability to enhance thermal feature [1–8].

Two important issues including extra stream resistance and

possible erosion should not be ignored because the parti-

cles are not stable in the suspension phase. For these rea-

sons, there has not any effort to commercialize such fluids

including particles which are interspersed and coarse-

grained [9–17]. Modern nanotechnology gives us the

opportunity to generate and to process substances including

crystallite scale which are less than 50 nm. General defi-

nition of nanofluid is fluids with suspended nanoparticles

[17–20]. Therefore, basis fluids flowing with certain heat

transfer features can pursue different patterns of behavior

when nanoparticles are suspended in them [21–24]. Several

new techniques were suggested to augment performance

[25–31]. Mixture of H2O and MWCNT was employed by

Hussien et al. [32] within a mini duct, and friction factor

was analyzed numerically. They reported Nu improvement

as a consequence of dispersing nanomaterial.

Multi-louvered fins have been mounted by Kumar et al.

[33] inside a duct filled with alumina. Performance of unit

augmented about 80% with 0.2% nanomaterial fraction.

Wu et al. [34] employed copper powder to expedite the

charging of paraffin and reported 32% reduction in melting
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time for 1% fraction. Variable magnetic impact for con-

trolling forced convection was investigated by Mehrez and

Cafsi [35], and they concluded that impact of nanoparticles

fraction is function of Hartmann number. There exist var-

ious passive ways for augmentation of efficiency like

inserting fins, etc. [36–47]. Beryllium oxide has been

mixed with deionized water by Selvaraj et al. [48] to

generate new carrier fluid for saving energy. TiO2 nano-

material for cooling of sinusoidal duct was employed by

Sajid et al. [49], and they achieved the highest performance

with 0.012% fraction of powder. Among various numerical

approaches which are offered by various researchers

[50–85], there is very accurate method which combined

two powerful approaches and its name is CVFEM which

was employed in various applications [86–100] and proved

the high power of this technique. As mentioned in [101],

CNT nanoparticles can be utilized corrugated cavity in

existence of rotational heat source inside the domain. They

showed that geometric variable has greater impact than

fraction of nanomaterial. Parabolic collector performance

was analyzed by Bellos and Tzivanidis [102]. They tried to

improve the efficiency with mounting fins and dispersing

CuO.

In this article, variations of entropy of nanomaterial by

imposing Lorentz forces were illustrated. Behaviors of

nanofluid through a permeable media were examined.

CVFEM was utilized to illustrate the impacts Da, Ra and

Ha.

Geometry and mathematical model

A permeable tank with circular hot inner cylinder is illus-

trated in Fig. 1. The testing fluid is iron oxide–water

nanomaterial. To inform about the amount of properties of

nanomaterial components, Ref. [103] can be reviewed. It

should be noticed that formulation for nanomaterial is as

same as that paper, too. The outer wall is maintained at Tc,

and domain was affected by magnetic effect in one direc-

tion. For macroscopic simulation, non-Darcy law was

involved with considering single-phase model. To gain the

accurate solution, we utilized CVFEM which was sug-

gested by Sheikholeslami [104] in last seven years. He

combined the benefits of FVM and FEM to achieve more

accurate approach. The formulations for our model are:
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To inform about the amount of properties of nanoma-

terial components, Ref. [103] can be reviewed. It should be

noticed that formulation for nanomaterial is as same as that

paper, too. In addition, to gain simpler formulation, pres-

sure terms were discarding by introducing given equation

as follows:

�
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Considering Eq. (6), the final formulation can be sum-

marized as:
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Results and discussion

This article investigates the nanomaterial irreversibility and

thermal behavior through a porous region. Medium with

various values of permeability is under the impact of

magnetic force. Mesh analysis example is given in Table 1,

and validation was performed as shown in Fig. 2 [105].

This graph indicates the good accuracy. Contour plots of

various outcomes are demonstrated in Figs. 3, 4, 5 and 6.

More fluctuation in contour of magnetic irreversibility can

be appeared with the increase in buoyancy effect. This is

attributed to domination of convection. Isolines of stream

have no significant changes with the increase in Da when

Ra has its lowest value. Lorentz forces can increase the

resistance against the nanofluid movement, so convective

flow reduces. Changing the patterns of isothermal decrea-

ses with applying magnetic force, and thermal plume

vanishes with augment of Ha. In contrast, exergy drop

amount reduces with the increase in Da and Ra. So, to gain

Table 1 Variation of outputs with changing mesh when / ¼

0:04; Da ¼ 100; Ha ¼ 20 and Ra ¼ 104
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the design with minimum irreversibility, lowest values of

Da and Ra should be selected.

Figures 7, 8 and 9 present the changes of the Nuave, Xd

and Bejan number. Feasible way to reach lower exergy drop

is selecting greater permeability and stronger buoyancy

force. As Da rises, Nuave improves which can be attributed

to reduction in resistance against the nanofluid flow. Be

increases with augment of Lorenz forces, so to reduce the

irreversibility, magnetic effect should be weaken. An aug-

ment in permeability of porous region results in augmenta-

tion in convective flow and in turn makes Nuave to increase.

It can be determined that Xd and Ha have direct relationship.

At greater Da, changes of exergy drop with Ha increase.

Permeability has negligible effect on variation of Be when

buoyancy force is very low. Hartmann number does not

expressively affect the Bejan number at low Ra. Below

formulations belong to above functions:

Nuave ¼ 2:22þ 0:07Daþ 0:13 log Rað Þ � 0:099Ha

þ 0:058Da log Rað Þ � 0:058DaHa

� 0:085 log Rað ÞHa

ð15Þ

Be ¼ 0:96� 0:036 log Rað Þ þ 8:27� 10�3Ha log Rað Þ

þ 9:34� 10�3Ha� 5:05� 10�3 log Rað ÞDa

þ 2:12� 10�3HaDa� 6:07� 10�3Da

ð16Þ

Xd ¼ 58:77� 1:44Daþ 2:22Haþ 1:21DaHa

� 1:08Da log Rað Þ � 2:22 log Rað Þ þ 1:6 log Rað ÞHa

ð17Þ

Conclusions

A numerical modeling based on CVFEM was utilized for

illustration of nanomaterial movement inside a cavity.

Increasing buoyancy force results in greater nanofluid dif-

fusion which guaranteed the higher Nuave. Permeability

augments the power of nanofluid flow which is result in

higher Nuave. Increasing Ha makes the Xd to decline. In

contrast, higher values of Da result in lower Xd. Exergy loss

declines as a consequence of greater buoyancy forces.

Augment of the circulation intensity occurs with augment of

Da while streamlines become weaker with augment of Ha.
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