

Selective laser melting of 316L stainless steel and related composites: processing and properties

Omar Oday Salman

Supervisors: Prof. Dr. Jürgen Eckert Dr. Sergio Scudino

Additive manufacturing (AM)

• What is AM ?

AM a layer-based automated fabrication process for making scaled 3-dimensional physical objects directly from 3D-CAD data without using part-depending tools

Benefits

- Design freedom
- Efficiency in materials use

Principles of selective laser melting (SLM)

Potential applications

Advantages

- High relative density
- High dimensional accuracy \Box □ Reduced post-machining
- High cooling rates 10^5 - 10^7 K/s
 - □ Refined microstructure
 - □ High strength

Medical

Stainless steel

Properties ^[1]

- Excellent oxidation and corrosion
 resistance at moderate temperatures
- □ Low costs
- □ Good ductility
- □ Relatively high strength
- □ Biocompatibility

• 316L stainless steel

Chemical composition of 316L powder (mass percent)

Fe	Cr	Ni	Мо	Mn	С
67.140	16.780 ±0.10	10.800	2.210	1.4	0.014
±0.23		±0.02	±0.02	±0.06	±0.001

SLM processing parameters

Objectives

- 1. Investigate the effect of the scanning strategy on the mechanical behavior of 316L stainless steel
- Understand the effect of annealing temperatures on the stability of phases, microstructure and mechanical properties
- 3. Strengthening the 316L stainless steel matrix by adding hard second phases: CeO₂ and TiB₂ particles

Characterization:

- Phase formation
- Microstructure at different length scales
 SEM, EBSD, TEM
- Mechanical properties
 - tensile and compression

Phase analysis

O.O. Salman, et al. Journal of Manufacturing Processes 45 (2019) 255-261

EBSD maps

Microstructure

Cr-Si rich cell boundaries Cell size about 500 nm Dislocations at cell walls

Mechanical properties

Mechanical properties depend on grain and cell size

Highest strength for stripe with contour strategy

Phase analysis

fcc-austenite **III11**) □1200) □33 1) ↑ □12 2 2) 1673K $\square (220)$ Intensity (arbitrary units) 1373K 1273K 873K 573K As- SLM 20 30 40 50 60 80 90 100 110 120 70 2 Theta (degrees)

Single-phase austenite
 No influnce of annealing on phase formation

EBSD maps

Microstructure

1

um

1

No cells above 1273 K

Π

Mechanical properties

Mechanical properties depend on grain and cell size

Highest strength for as-SLM material

Strengthening the matrix

Best mechanical properties for stripe with contour strategy
 Microstructure and mechanical properties stable up to 873 K

How can 316L matrix be strengthened?

□ By the addition of hard second phase particles

□ Stainless steel matrix composite (SMCs)

- High thermal stability
- High strength and excellent wear resistance at elevated temperatures
- Excellent creep resistance

 Fabrication 316L/CeO₂ matrix composites requires the optimization of processing parameters

Varying the scanning speed can be used to improve the quality of the specimens^[1]

Optimization of the laser scanning speed

Phase analysis

□ Matrix : single-phase austenite structure

Microstructure

- □ CeO₂ induces microstructural refinement
 - Cellular refinement
 - Grain refinement

Mechanical properties

Yield strength unreinforced 316L: **412 ± 7** MPa Yield strength 316L/CeO₂ composite: **485 ± 4** MPa

Strengthening 316L steel with TiB,

Intensity (arbitrary units)

□ Matrix : single-phase austenite structure

TECHNISCHE UNIVERSITÄT

DRESDEN

22

Strengthening 316L steel with TiB,

Microstructure

Strengthening 316L steel with TiB,

Microstructure

Strong cell refinement

Mechanical properties

Summary

Phase formation:

A single-phase austenite structure is formed regardless of the scanning strategy, annealing temperature or addition of second phase

Microstructure:

The smallest cell and grain sizes for stripe with contour strategy. The cellular microstructure is stable up to 873 K.

Further strong grain and cell refinement by the addition of CeO₂ and TiB₂.

Mechanical properties:

Strength depends on grain and cell size.

Highest strength for stripe with contour strategy.

The addition of CeO₂ and TiB₂ and related microstructural refinement

enhances yield strength of 316L matrix.

Acknowledgements

- □ My supervisors:
- Prof. Dr. J. Eckert and Dr. S. Scudino
- Defense commission:
- Prof. Dr. M. Zimmermann, Prof. Dr. M. Gude, Prof. Dr. C. Leyens and Prof. K.B. Surreddi
- **Cooperation**:
- Dr. C. Gammer for TEM; Prof. Dr. T. Niendorf and Dr. F. Brenne for residual stress evaluation
- □ Colleagues at IKM:
- Dr. T. Gemming, Dr. I. Kaban, Dr. U. Kühn, Dr. S. Pauly, A. A. Fernandes, M. R. da Silva,
- H. Weber, Dr. T. Gustmann, P. Thirathipviwat, Dr. H. Schwab, Dr. R.N. Shahid, A. Funk, L. Deng, He
- Tianbing, M. Mange, B. Präßler-Wüstling and other colleagues
- Financial support from the Ministry of Higher Education & Scientific Research (MoHESR), Iraq
 (01480) and the Graduate Academy of TU Dresden

"Was wir wissen, ist ein Tropfen; was wir nicht wissen, ein Ozean." Isaac Newton

± ± ± ± ± ± ± ±

H