

OUTLINE

1 Introduction

- 2 Steps in Hypothesis Testing
- **3 Large Sample Mean Test**
- 4 Small Sample Mean Test
- **5** Variance or Standard Deviation Test

6 Confidence Intervals and Hypothesis Testing

INTRODUCTION

- Hypothesis testing is a decision-making process for evaluating claims about a population.
- -We must define the population under study.
- -State the particular hypotheses that will be investigated,
- -Give the significance level.
- -Select a sample from the population, collect the data, perform the calculations required for the statistical reach a conclusion.

STEPS IN HYPOTHESIS TESTING

- A Statistical hypothesis is a conjecture about a population parameter. This conjecture may or may not be true. The null hypothesis, symbolized by H_0 , is a statistical
 - hypothesis that states that there is no difference
 - between a parameter and a specific value or that there is

no difference between two parameters

ALTERNATIVE HYPOTHESIS

The alternative hypothesis, symbolized by H_1 ' is a statistical hypothesis that states a specific difference between a parameter and a specific value or states that there is a difference between two parameter.

EXAMPLE 1

- A medical researcher is interested in finding out whether a new medication will have any undesirable side effects. The researcher is particularly concerned with
 - the pulse rate of the patients who take the medication.

What are the hypotheses to test whether

the pulse rate will be different from the

mean pulse rate of 82 beats per minute?

- H0: $\mu = 82$ H1: $\mu \neq 82$
- This is a two-tailed test.

A chemist invents an additive to increase the life of an automobile battery. If the mean lifetime of the battery is 36 months, then his hypotheses are $H_0: \mu \le 36$ $H_1: \mu > 36$ This is a right-tailed test.

EXAMPLE 3

A contractor wishes to lower heating bills by using a special type of insulation in houses. If the average of the monthly heating bills is \$78, her hypotheses about heating costs will be

 $H_0: \mu \ge \$78$ $H_0: \mu < \$78$ This is a left-tailed test.

STATISTICAL TEST

- A statistical test uses the data obtained from a sample to make a decision about whether or no the null hypothesis should be rejected.
- The numerical value obtained from a statistical test is called the test value.
- In the hypothesis-testing situation, there are four possible outcomes.

In reality, the null hypothesis may or may not be true, and a decision is made to reject or not to reject it on the basis of the data obtained from a sample.

FOUR POSSIBLE OUTCOMES.

	H ₀ True	H False
Reject <i>H</i> ₀	ERROR	CORRECT
	TYPE I	DECISION

Do not reject H₀ CORRECT ERROR TYPE II DECISION

TYPES OF ERROR THERE ARE TWO TYPES OF ERROR: 1-A type I error occurs if one rejects the null hypothesis H0, when it is true.

2-A type II error occurs if one does not reject the null hypothesis when it is false.

THE LEVEL OF SIGNIFICANCE

- The level of significance is the
- maximum probability of committing a type I error. This probability is symbolized by α (Greek letter alpha). That is, $P(\text{type I error})=\alpha$.
- *P*(type II error) = β (Greek letter
- beta).

TYPICAL SIGNIFICANCE LEVELS

- Typical significance levels are: 0.10, 0.05, and 0.01.
- For example, when $\alpha = 0.10$, there is a 10% chance of rejecting a true null hypothesis.
- The critical value(s) separates the
- critical region from the noncritical region. The symbol for critical value is C.V.

THE NONCRITICAL OR NO REJECTION REGION

- The noncritical or no rejection
- region is the range of values of the test value that indicates that the difference was probably due to chance and that the null hypothesis should not be rejected.
- A one-tailed test (right or left) indicates that the null hypothesis should be rejected when the test value is in the critical region on one side of the mean.

FINDING THE CRITICAL VALUE Finding the Critical Value for $\alpha = 0.01$ (Right-Tailed Test)

FINDING THE CRITICAL VALUE

Finding the Critical Value for $\alpha = 0.01$ (Left-Tailed Test)

For a left-tailed test when $\alpha = 0.01$, the critical value will be -2.33 and the critical region will be to the left of -2.33.

Finding the Critical Value for $\alpha = 0.01$ (Two-Tailed Test) •In a two-tailed test, the null hypothesis should be rejected when the test value is in either of the two critical regions.

LARGE SAMPLE MEAN TEST (Z TEST)

- The *z* test is a statistical test for the mean of a population. It can be used when $n \ge 30$, or when the population is normally distributed and σ is known.
- The formula for the *z* test is given on the next slide.

THE FORMULA FOR THE Z TEST

$$z = \frac{X - \mu}{\sigma / \sqrt{n}}$$

where

 \bar{X} = sample mean μ = hypothesized population mean σ = population deviation n = sample size