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A B S T R A C T   

The efficient design of heat sinks is a severe challenge in thermo-fluid engineering. A creative and innovative way 
is applying lateral perforations to parallel finned heat sinks. The significance of achieving an optimal design for 
perforated finned heat sinks (PFHSs) has inspired the present authors to introduce a novel hybrid designing 
approach that combines computational fluid dynamics (CFD), machine learning (ML), multi-objective optimi-
zation (MOO), and multi-criteria decision-making (MCDM). The design variables considered include the size 
(0.25<φ<0.5) and shape (square, circular, and hexagonal) of the perforations, as well as the airflow Reynolds 
number (2000<Re<5000). The design objectives have been redefined as dimensionless parameters to assess heat 
dissipation, pressure drop, and heat sink weight. These modified objectives encompass thermal performance 
(TP), thermo-hydraulic performance (THP), and thermo-volumetric performance (TVP). The modeling process 
showed that both stepwise mixed selection (SMS) and GMDH-NN techniques exhibited comparable performance 
in most modeling scenarios. Nevertheless, the SMS approach demonstrated more reliability in modeling diverse 
objectives. Furthermore, the optimization results demonstrated that the optimal size of the perforations is 
strongly dependent on their shapes. In PFHSs with square perforations, approximately 54% of the Pareto points 
had a φ-value greater than 0.45. Meanwhile, in PFHSs based on circular perforations, more than 50% of the 
optimal points have φ less than 0.4. The MCDM-based analysis on various real-world scenarios indicated that 
using PFHSs with square-shaped perforations with Reynolds numbers around 2000 and considering a wide range 
of perforations’ sizes could result in optimal designs.   

1. Introduction 

In recent years, the advancement of heat transfer equipment has 
encountered various challenges, specifically in improving productivity 
and thermal efficiency while concurrently reducing energy consumption 
and size. These ideals can be accomplished by implementing heat 
transfer enhancement methods (HTEMs) [1,2]. HTEMs offer promising 
solutions to overcome obstacles and achieve the desired objectives in 
heat transfer technology. HTEMs fall into two categories: active and 
passive. The active type uses external power such as electric fields [3], 

magnetic fields [4], fans/pumps [5], jets [6], and fluid/surface vibration 
[7,8]. In contrast, the passive type adds items such as porous materials 
[9], micro/nano-sized materials [10–16], ribs [17,18], vortex genera-
tors [19], and twisted tapes [20] to the system. Furthermore, passive 
techniques include geometric corrections such as surface roughness [21, 
22] and extended surfaces [23–25]. Extended surfaces or fins have sig-
nificant potential to boost the heat transfer rate between the surface and 
the surrounding environment, making them a viable option in many 
real-world applications [26]. Fins can be used in radial [27], annular 
[28], rectangular [29], and pin-shaped [30] types according to the 
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primary heat transfer surface. 
Rectangular fins have gained significant practical applications due to 

their favorable hydrothermal performance, ease of production, and 
compatibility with different base surfaces [31]. These factors have 
prompted researchers to extensively investigate and assess the utiliza-
tion of rectangular fins in various analytical, experimental, and nu-
merical studies [32]. Adhikari et al. [33] conducted comprehensive 
numerical simulations to explore the complex interplay between the 
geometrical characteristics of finned heat sinks, such as fin spacing, 
height, and length, and their subsequent effects on thermal and hy-
draulic performance. The research findings revealed that the geomet-
rical parameters significantly impact the airflow field at the ends of the 
fin channels. This influence, in turn, noticeably affects the heat sink 
performance, especially its thermal efficacy. Rabani and Rabani [34] 
conducted an experimental setup to improve the thermal effectiveness of 
a Trombe wall. They attempted to achieve this objective by integrating 
rectangular fins into the design. According to their results, employing 
rectangular fins led to a significant enhancement (6%) in the heat 
transfer rate (HTR). Sathe et al. [35] conducted a study analyzing the 
impact of different geometric factors on the cooling effectiveness of 
rectangular-based finned heat sinks, applicable specifically to cooling 
electronic devices. Cong et al. [36] applied the principles of the con-
structal theory to design highly efficient rectangular fins specifically 
customized for electronics cooling. Moreover, Dasore et al. [37] con-
ducted a detailed examination of internal combustion engines using 
numerical simulations to study how rectangular and elliptical fins affect 
the thermal efficiency of their air-cooled system. 

Creating perforations into the fins is highly effective for optimizing 
various heat sinks. This technique leads to lower energy usage (pressure 
drop), reduced weight, and improved HTR [24]. Perforations on the 
surface help increase the total surface area, enhancing HTR. Addition-
ally, strategically positioning the perforations on the fin can help reduce 
the resistance force and, as a result, reduce the power needed for fluid 
pumping. Furthermore, there is a noticeable difference in weight be-
tween fins with perforations and solid ones. In general, it can be 
concluded that utilizing perforated fins enables the achievement of all 
three desirable objectives in optimizing heat sinks. 

In recent years, there has been a significant increase in the perfor-
mance analysis of perforated finned heat sinks (PFHSs) through exper-
imental and computational evaluations. In this regard, Karlapalem and 
Dash [38] present an optimized design for an electronics cooling type of 
heat sink by incorporating circular perforations to branching fins. They 
desired to enhance heat dissipation by fine-tuning the perforations’ 
geometrical characteristics, such as size, spacing, and angle. The effi-
ciency of PFHS applicable to cooling solar PV panels was analyzed by 
Hudişteanu et al. [39]. They simulated the influences of circle-shaped 
perforations on the thermal performance of PFHS. Their outcomes 
indicate that employing perforated fins can lead to a notable 6.49% 
boost in energy generation compared to the standard setup. Egab and 
Oudah [40] dissected the benefits of circular-shaped perforated fins for 
performance enhancement of Li-ion batteries. The researchers noticed 
that the Nusselt number of the newly designed heat sink is roughly 20% 
greater than that of the conventional ones. Chingulpitak et al. [41] 
utilized CFD simulations to find an optimized design for PFHS by 
varying the number and dimensions of circular perforations. According 
to their findings, adding 75 perforations with a 3 mm diameter could 
improve the HTR by 11.6%. Furthermore, they observed a significant 
decrease of 28% in the size of the superior PFHS. 

The research indicates that both longitudinal and lateral perforations 
can effectively enhance the performance of heat sinks based on rectan-
gular fins. Shaeri and Yaghoubi [42] ran CFD simulations to examine 
how changing the number of longitudinal channel-like perforations in a 
PFHS affects flow and thermal fields. Their results demonstrated that the 
number of perforations significantly impacts the heat dissipation and 
airflow resistance. Considering the turbulent airflow, Shaeri and 
Yaghoubi [43] accomplished additional research to simulate their 

earlier setup [42]. They defined a new parameter called porosity to 
assess how perforation volume affects the PFHS’s flow and heat transfer 
efficiency. The researchers observed that incorporating three perfora-
tions with the highest porosity in each fin reduced weight and pressure 
drop and improved heat dissipation. In a separate study, Shaeri and Jen 
[44] utilized the highest porosity identified in Ref. [43] to examine the 
influence of the number of perforations on PFHS thermal and flow fields. 

The capability of lateral perforations in improving the hydrothermal 
performance of a heat sink consisting of an array of rectangular fins was 
evaluated by Shahari et al. [45]. Their CFD-based analysis confirmed the 
significant impact of the number and porosity of lateral square-shaped 
openings on the performance of PFHSs. The highest level of effective-
ness was observed in the PFHS with six square perforations and a 
porosity of 0.333. Shaeri and Bonner [46] experimentally analyze the 
influence of geometric characteristics of lateral perforations on thermal 
and flow fields of a laterally PFHS. They considered four variables 
associated with perforations: porosity, distance, number, and size. In 
order to demonstrate the superiority of PFHSs compared to solid-finned 
heat sinks (SFHSs), they defined a novel parameter known as mass-based 
thermal resistance (MBTR). They confirmed that without boosting 
pumping power, the MBTR of laterally PFHSs was significantly lower, 
ranging from 41% to 51%, compared to SFHSs. Shaeri and Bonner [47] 
extended their previous research on laterally PFHSs by developing 
analytical models based on empirical data. They consider Prandtl 
number, Reynolds number, fins gap size, and perforations porosity as 
input variables to predict the Nusselt number of PFHSs as output. 

In recent years, industrial and engineering communities have expe-
rienced significant evolution under the influence of artificial intelligence 
(AI). There is significant potential for AI, specifically machine learning 
(ML), as its predominant subset in the design, control, monitoring, and 
optimization of heat sinks. By receiving limited information from heat 
sinks, ML algorithms have a remarkable ability to predict flow and 
thermal behavior. This feature reduces the financial costs of experiments 
and the computational costs of numerical simulations. Also, powerful 
ML-based models can act as a foundation for optimization algorithms 
and lead to the optimal selection of the configuration and geometrical 
characteristics of heat sinks. AI-based tools have the capability to aid in 
preventive maintenance by analyzing data from diverse sources like 
temperature sensors. By detecting potential issues before they escalate 
into critical problems, AI enhances the durability and longevity of heat 
sink systems. 

Numerous algorithms have been developed to construct ML models, 
with some of the widely recognized ones being.  

• Deep neural networks (DNN) [48].  
• Artificial neural network (ANN) [49–53].  
• Decision trees (DT) [54].  
• Support vector regression (SVR) [55].  
• Gradient boosting algorithm (GBA) [56].  
• Gaussian process regression (GPR) [54,57,58].  
• Random forest (RF) [59].  
• K-nearest neighbor (K-NN) [60].  
• Light gradient-boosting machine (LightGBM) [61].  
• Multivariate adaptive regression splines (MARS) [62].  
• Extreme gradient boosting (XG-Boost) [63].  
• Adaptive neuro-fuzzy inference systems (ANFIS) [64–67]. 

Table 1 summarizes the most recent research focused on utilizing 
artificial intelligence algorithms for optimization and modeling heat 
sinks. 

In the last two years, several AI-based analyses have been done to 
design, optimize, and model heat sinks. Wang et al. [68] proposed a 
hybrid method that combines CFD, ML, and multi-objective optimiza-
tion to optimize a nanofluid mini-channel heat sink. CFD data-driven 
models developed using SVR, GPR, and RF methods for average tem-
perature and pressure drop in terms of inputs (heat flow density, 
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Reynolds number, and volume fraction). The GPR model was reported as 
the most suitable ML algorithm, attaining high R2 values of 0.9985 for 
pressure drop and 0.9939 for average temperature prediction. The 
NSGA-II algorithm successfully provided optimal solutions across 
various operating conditions. Saeed et al. [69] employed an ML-based 
optimization strategy to improve the thermo-hydraulic effectiveness of 
a compact mini-channel heat sink. They used 3D-RANS simulations to 
provide CFD data as feed for their hybrid strategy. Their optimization 
variables were fins geometrical characteristics (height, spacing, and 
number) alongside Reynolds number as a fluid flow feature. Six 
well-known ML methods, DNN, ANN, GBA, DT, RF, and K-NN, were 
applied to find the best predictive models for the heat transfer coeffi-
cient and pressure drop as outputs. The superior models were coupled to 
GA to determine the characteristics of the optimal heat sink. The hybrid 
AI-based procedure demonstrated a significant performance improve-
ment, achieving up to a 2.1 times enhancement compared to the most 
effective heat sink in the database. To predict metal foam heat sinks’ 
hydraulic and thermal efficiency, Tikadar et al. [70] evaluated five ML 
techniques, including ANN, SVR, XGBoost, RF, and K-NN. They used a 
database consisting of 1000 data points generated by CFD in the 
modeling process. The friction factor and Nusselt number act as output 
variables. While Reynolds number, porosity, pore density, and heat sink 
geometrical parameters were considered inputs. The finding revealed 
that ANN, SVR, XGBoost, and RF, with mean absolute percentage error 
(MAPE) below 4.59%, presented precise models for predicting outputs. 
Nevertheless, SVR and ANN indicated predominance, particularly when 
tested on out-range datasets. Sikirica et al. [71] present new insights into 
the design of microchannel heat sinks with ribs and secondary channels. 
They combined CFD, ML modeling, and multi-objective optimization to 
minimize the thermal resistance and pumping power. They used a Latin 
hypercube as the design of experiments (DOE) technique for sampling. 
Also, ANN, GBA, and RF algorithms were applied in the optimization 
process. The ML-based optimization framework resulted in design points 
that successfully reduced the temperature by 10% compared to a 
traditional microchannel design while maintaining the pressure limits. 
Furthermore, the optimized points exhibited a remarkable reduction in 
pressure drop (more than 25%). 

Shaeri et al. [72] aimed to optimize air-cooled parallel plate-finned 
heat sinks by combining ANN and greedy search algorithms. They 
defined their design objectives based on practical applications, which 
include maximizing the heat transfer coefficient ratio to pressure drop, 
maximizing the heat transfer coefficient within a limited flow rate, and 
minimizing the weight where the heat transfer coefficient is maximized 
within the highest permitted flow rate. They claimed that this innovative 
and adaptable AI-based optimization method greatly aided the practical 
design of parallel plate-finned heat sinks to meet various industrial re-
quirements and accommodate diverse design specifications. Kim et al. 
[73] used a databank consisting of 906 data points from 15 

investigations to develop valid ML models to predict the behavior of 
micro-pin fin heat sinks. Three ML algorithms, including LightGBM, 
XG-Boost, and ANN, constructed powerful relationships between ther-
mal performance as output and geometric shape and operating condi-
tions as inputs. The ML-based models displayed notably superior 
prediction accuracy, with mean absolute errors (MAEs) ranging from 
7.5% to 10.9%. The results represented an around five times improve-
ment in accuracy compared to the previous correlations. Mohammad-
pour et al. [74] considered a microchannel heat sink (MCHS) with 
double synthetic jets to determine the impacts of operational and 
geometrical variables on nanofluid thermal performance. In order to 
achieve this purpose, they combined CFD and ML algorithms (ANN, 
GPR, RF, and K-NN). Their inputs include jet phase actuation and insert 
characteristics (diameters, types, and arrangements). The findings 
revealed that the k-nearest neighbor model exhibited the best predictive 
performance compared to other evaluated ML models. An optimal 
combination of various input factors was suggested to minimize pressure 
drop and maximize heat transfer. 

The previous studies [45,46] emphasized the crucial role of geo-
metric elements of lateral perforations in the performance of finned heat 
sinks. These studies utilized numerical simulations to analyze the impact 
of perforation size and number on thermal and hydraulic performance. 
However, they focused on a single-objective, case-specific approach 
rather than a comprehensive multi-objective approach. Therefore, the 
absence of a comprehensive design approach for multi-objective opti-
mization of lateral perforations in PFHSs remains a research gap. To 
bridge this gap, the present authors propose a novel hybrid approach 
that integrates computational fluid dynamics, machine learning, 
multi-objective optimization, and multi-criteria decision-making. This 
comprehensive hybrid approach aims to facilitate the optimal design of 
lateral perforations in finned heat sinks. The dimensions and configu-
ration of the perforations are treated as geometric design variables, 
whereas the Reynolds number is considered an input variable related to 
the fluid flow. The design objectives are reformulated as dimensionless 
representations of heat transfer rate, pressure drop, and heat sink size. 
The redefined objectives encompass thermal performance (TP), 
thermo-hydraulic performance (THP), and thermo-volumetric perfor-
mance (TVP). The innovative design process utilized in the present 
investigation has the potential to bring about a significant trans-
formation not only in heat sink design but also in diverse engineering 
applications. 

2. Hybrid procedure and design objectives 

2.1. Proposed design strategy 

The suggested hybrid strategy is composed of four distinct stages. 
During the initial phase, CFD is utilized to simulate the performance of 
the PFHSs. The objective of the first phase is to assess the influence of 
various design variables on the objective variables. In the second phase, 
the modeling process is implemented using the data acquired from the 
CFD simulations. For this purpose, two ML techniques, stepwise mixed 
selection (SMS) and GMDH-type artificial neural networks (ANN), are 
used. These two formula-based techniques efficiently create a relation-
ship between the input and output variables regardless of the quality and 
quantity of data. In the third phase, the top-performing models obtained 
from the previous phase are incorporated into the MOO process using 
the NSGA-II algorithm. This process identifies the Pareto front, repre-
senting the optimal trade-off solutions. Finally, in the fourth phase, the 
desirable design for the designer is determined from the optimal points 
of the Pareto fronts using two well-known techniques in MCDM: TOPSIS 
and VIKOR. Decision-making is performed based on each objective’s 
assigned importance coefficients (weights). Decision-making based on 
objective weights is one of the innovative aspects of the present study. In 
fact, by weighing the objectives, the designer will be able to pick the 
optimal design points according to the conditions and operational 

Table 1 
Latest research on the application of artificial intelligence algorithms for opti-
mization and modeling of diverse heat sinks.  

Authors Year Heat sink type Artificial intelligence 
algorithms 

Wang et al. [68] 2023 Mini-channel SVR, GPR, RF, NSGA-II 
Saeed et al. [69] 2023 Mini-channel DNN, ANN, GBA, DT, RF, K- 

NN, GA 
Tikadar et al. [70] 2022 Metal foam ANN, SVR, XGBoost, RF, K- 

NN 
Sikirica et al. [71] 2023 Micro- 

channel 
ANN, GBA, RF 

Shaeri et al. [72] 2022 Parallel plate ANN and greedy search 
Kim et al. [73] 2022 Micro-pin fin LightGBM, XG-Boost, ANN 
Mohammadpour et al. 

[74] 
2022 Micro- 

channel 
ANN, GPR, RF, K-NN 

Suzuki et al. [75] 2023 Lattice- 
structure 

RF, ANN  

S.A. Abdollahi et al.                                                                                                                                                                                                                            



Results in Engineering 21 (2024) 102002

4

requirements of the heat sink. The detailed flowchart of the described 
four phases of the present strategy is depicted in Fig. 1. This approach 
can lead to reliable results in designing laterally PFHSs, especially in 
applications that focus on electronics cooling systems. Detailed de-
scriptions and outcomes of each design phase will be discussed sepa-
rately in subsequent sections. 

As mentioned in the introduction, the three main elements that 
should be considered in the design of heat sinks include HTR, pressure 
drop, and weight. Based on these factors, three dimensionless objectives 
for maximization are defined in the current research, which includes 
thermal performance (TP), thermo-hydraulic performance (THP), and 
thermo-volumetric performance (TVP). Given the criticality of heat 
dissipation, it is incorporated into all three objectives. In the rest of this 
section, these three objectives will be examined in detail. 

2.2. Thermal performance (TP) 

The TP measures the thermal effectiveness of PFHSs. It quantifies the 
extent to which HTR is enhanced by using PFHS compared to SFHS. The 
TP value is calculated using the following formula: 

TP=
qpf

qsf
(1)  

where qpf and qsf compute the HTR for perforated and solid fins. The 
equation below can be used to determine the fins’ HTR: 

qf =
∑

i
hiΔAi(Ts − T∞) (2)  

where T∞ signifies the free stream temperature, and Ts symbolizes the 
fin’s surface temperature. 

2.3. Thermo-hydraulic performance (THP) 

The friction drag force evaluates the hydraulic effectiveness of 
laterally PFHSs. The local skin friction factor is computed as follows: 

Cf =
τw

0.5ρu2
∞

(3) 

The definition of wall shear stress (τw) is given by the following 
equation: 

τw = μ
(

∂u
∂n

)

s
(4) 

Also, the average friction coefficient (AFC) is computed as follows: 

Cf =
1

AT

∑

i

(
Cf

)

iΔAi (5)  

ΔAi denotes every solid cell interacting with the airflow, while AT rep-
resents the total area of all solid surfaces in contact with the airflow. 

A combination of hydraulic performance and thermal efficiency of 
PFHSs is a valuable objective in the designing process. Unifying these 
two critical factors in a dimensionless objective is possible as follows: 

THP=
qpf

/
qsf

(
Cf ,pf

/
Cf ,sf

)1/3 (6)  

where CD,sf and CD,pf represent the ADC for the solid and perforated 
finned heat sinks, respectively. 

2.4. Thermo-volumetric performance (TVP) 

Similar to the THP, simultaneously considering the heat sink size and 
its thermal effectiveness in one factor leads to a valuable criterion. 
Merging these two factors into one objective is formulated as follows: 

TVP=
qpf

/
qsf

Vpf
/

Vsf
(7)  

where Vsf and Vpf signifies the volume of SFHS and PFHS. 

Fig. 1. General schematic of the hybrid strategy utilized in this study.  
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3. CFD modeling 

3.1. Laterally PFHS description 

The prior investigation [45] showed that the laterally PFHS with six 
perforations indicates a high thermal-hydraulic potential. Therefore, the 
present research uses a PFHS with six perforations in the shapes of 
squares, circles, and hexagons. The size of perforations is defined by a 
variable called the perforations volume ratio (φ): 

φ=
volume occupied by the perforations

total volume of the solid fin
(8)  

φ is evaluated in the range of 0.25–0.5 for different perforations’ shapes 
(PSs). Fig. 2 depicts the PFHS structure and the simulated domain 
alongside their dimensions. In addition, Fig. 3 (a) displays the PSs 
applied on the lateral surface of the fins. 

3.2. Assumptions and boundary conditions (BCs) 

Below is a concise overview of the assumptions.  

• The airflow is steady-state, turbulent, and incompressible.  
• The fin’s dimensions are assumed to be L = 24 mm, H = 12 mm, and 

D = 4 mm.  
• A uniform spacing of 10 mm (2.5D) is considered between the fins.  
• The heat sink is made of aluminum.  
• The airflow’s properties are temperature-independent.  
• The specified limits for perforations’ size (0.25 ≤ φ ≤ 0.5) are such 

that it leads to maintaining the turbulent flow inside the 
perforations.  

• The low value for the maximum temperature difference of the 
simulated domain (<45) leads to ignoring the radiation heat transfer 
[76].  

• The Richardson number (Gr/Re2) is significantly less than 0.001, 
which leads to the neglect of natural convection.  

• Seven Reynolds numbers based on fin thickness (ReD = u∞Dν− 1) 
between 2000 and 5000 (interval of 500) were studied, and no 
instability in the flow field was observed in any of them. 

Due to the symmetrical arrangement of fins and uniform airflow, the 
simulation focuses on a single fin [42–45,77]. In addition, previous 
studies [42–45,77] demonstrated that the distance between the fins and 
plates ABCD, EFGH, and BCHG is such that the BCs do not affect the flow 
and thermal fields of the fins. Based on Fig. 2, the BCs can be described 
as follows.  

• T∞ = 298.15 K at the free stream plane (BCHG) and the inlet BC 
(ABCD).  

• Zero gradient (outflow) BC at outlet plane (EFGH).  
• Tc = 343.15 K at the base plate of the heat sink.  
• Symmetry BC on the left (CDEH) and right (ABGF) sides of the 

computational domain.  
• The upstream and downstream plates of the fin are adiabatic (q″ =

0). 

3.3. Governing equations and turbulent model 

The governing equations of the simulated domain considering the 
assumptions are as follows [44,45]: 

Continuity :
∂ui

∂Xi
= 0 (9)  

Momentum :
∂

∂Xj

(
ρuiuj − τij

)
= −

∂P
∂Xi

(10)  

Stress : τij = 2μSij −
2
3
μt

∂uk

∂Xk
δij (11)  

Energy : ρCp
∂(uiT)

∂Xi
=

∂
∂Xi

[
∂T
∂Xi

(λ+ λt)

]

(12)  

Fourier’s equation :
∂2T
∂X2 = 0 (13) 

Solving the Fourier and energy equations (heat conduction and 
airflow convection) makes it possible to ascertain the temperature dis-
tribution on the surfaces of both the perforations and fins [45]. Addi-
tionally, expressions for Sij, δij, and μt are provided as follows: 

Distortion rate tensor : Sij =
1
2

(
∂ui

∂Xj
+

∂uj

∂Xi

)

(14)  

Kronecker delta function : δij =

{
1 i = j
0 i ∕= j (15)  

Turbulent viscosity : μt =
ρCμk2

ε (16) 

Prior examinations [76,78–80] have demonstrated that the RNG k-ε 
turbulent model [81], an adaptation of the k-ε model, can effectively 
replicate important flow characteristics such as recirculation, rapid 
strain, streamline curvature, flow separation, and reattachment in CFD 
solving process. 

Turbulent kinetic energy :
∂(ρuik)

∂Xi
=

∂
∂Xi

(

αkμeff
∂k
∂Xi

)

+ μtS
2 − ρε (17)  

Turbulent energy dissipation rate :
∂(ρuiε)

∂Xi
=

∂
∂Xi

(

αεμeff
∂ε
∂Xi

)

+ C1εμtS
2ε
k
− C∗

2ερ
ε2

k
(18) 

Let C∗
2ε, S, and μeff be denoted as follows: Fig. 2. The LPFHS structure and optimal simulation domain.  

S.A. Abdollahi et al.                                                                                                                                                                                                                            



Results in Engineering 21 (2024) 102002

6

Additional source parameter : C∗
2ε =C2ε +

Cμη3(1 − η/η0)

1 + βη3 (19)  

Mean rate of the strain tensor : S=
̅̅̅̅̅̅̅̅̅̅̅̅
2SijSij

√
(20)  

Effective viscosity : μeff = μ + μt (21) 

The factor C∗
2ε is responsible for differentiating between the RNG k-ε 

and standard k-ε models. Below are the suggested values for the con-
stants in Eqs. (18) and (19): 

Cμ = 0.0845 (22)  

C1ε = 1.42  

C2ε = 1.68  

αε =αk = 1.393  

β= 0.012  

η0 = 4.38  

η= Sk/ε  

3.4. Computational method 

ANSYS Fluent CFD package based on the finite volume method 
(FVM) is employed to calculate fluid flow and thermal fields in the 
present computational domain. A QUICK scheme [82] is applied for 
discretizing governing equations, and a SIMPLE algorithm is used to 
calculate the pressure field, maintain mass conservation, and correlate 
velocity and pressure corrections. In general, the solution process can be 
summarized in two steps.  

1. Calculate the flow field in the simulation domain by solving mass 
conservation, momentum conservation, k, and ε equations. 

2. Resolve the thermal field in the simulation domain utilizing the in-
formation from the flow field achieved in the first step. 

The energy equation reaches convergence when residual values are 
below 1 × 10− 10, while the criterion is set at 1 × 10− 6 for other 
equations. 

3.5. Grid analysis 

In CFD simulations, reducing the cost of calculations while achieving 
maximum accuracy, especially in three-dimensional problems, depends 
on the grid study. In the present paper, five mesh grids are evaluated by 
various perforated fins, the results of which for a sample with square- 
shaped perforations are presented in Table 2. 

The determination of the average Nusselt number (Nu) during the 
grid study and validation process involves the following calculation: 

Nu=
hD
λ

(23) 

The calculation of the average heat transfer coefficient, represented 
as h, is performed using the following formula: 

Fig. 3. (a) Various perforation types utilized in LPFHS structure and (b) sample of mesh quality for square-shaped configuration (φ = 0.3).  

Table 2 
Grid analysis for a LPFHS with square perforations (φ = 0.3 and Re = 3000).  

Domain Grid size (X × Y ×
Z) 

Perforations Grid Size (X × Y ×
Z) 

Nu Cf 

146 × 70 × 36 12 × 12 × 12 15.15 0.004921 
192 × 88 × 42 14 × 14 × 14 16.42 0.005631 
240 × 110 × 50 16 × 16 × 16 17.37 0.006114 
264 × 132 × 58 18 × 18 × 18 17.78 0.006268 
300 × 148 × 64 20 × 20 × 20 17.95 0.006309  
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h=
1

AT

∑

i
hiΔAi (24)  

h=
− λ

(
∂T
∂n

)

S

TS − T∞
(25) 

Based on Table 2, the relative deviation of the Nu and Cf from the 
fourth step onwards is less than 1% and 0.7%, respectively. Hence, the 
264 × 132 × 58 grid points in the X, Y, and Z directions can be 
considered a suitable foundation for all PFHSs. This grid structure is 
confirmed by implementing the grid study process on other airflow 
characteristics and changing the perforations’ sizes and shapes. This grid 
for the sample with square perforations is depicted in Fig. 3 (b). In order 
to enhance the modeling precision of reattachment and recirculation 
zones, a denser grid has been implemented around the fin and perfo-
rations, as observed in the figure. 

3.6. Validation 

Two experimental and numerical studies are selected to check the 
validity of the CFD simulation implemented in the present study. For the 
SFHS, the experimental data of Jonsson and Moshfegh [83] were 
compared with the present results. Jonsson and Moshfegh tested seven 
types of heat sinks in the wind tunnel at 293.15 K, among which the 
plate-fin type heat sink had a significant similarity with the present SFHS 
configuration. Fig. 4 (a) illustrates the dimensions of the plate-fin type 
heat sink. In order to compare results, the thermal resistance is defined 
as follows: 

Rth =
1

hAhs
(26)  

h=
Q

Ahs(Tb − T∞)
(27)  

where Q represents HTR and Ahs symbolizes the heat transfer area. Also, 
Jonsson and Moshfegh defined the Reynolds number using the hydraulic 
diameter of the wind tunnel, which is 10 mm in height and 63 mm in 
width. 

Fig. 4 (a) indicates that the maximum relative deviation between the 
experimental data and the present results is 5.4%, which reveals the 
high validity of the present numerical approach in predicting the flow 
and thermal fields for solid-type heat sinks. 

Furthermore, the present SFHS and PFHSs were subjected to a vali-
dation process with the CFD work of Shaeri et al. [45]. Two parameters, 
namely Nu and Cf , are selected to compare the results. Fig. 4 (b) presents 

this comparison, showing the highest relative deviation in all data points 
below 1%. This suggests that the present numerical procedure for 
analyzing laterally PFHSs is highly accurate and reliable. 

4. CFD data analysis 

By calculating the flow and thermal fields using CFD, the objectives 
of the problem (THP, TVP, and TP) can be computed in terms of design 
variables (PS, Re, and φ). A wide range of Reynolds numbers and the 
perforations volume ratio were considered to enable the exploration of 
the entire problem space in the modeling and optimization process. 

Descriptive statistics in Table 3 characterize the datasets resulting 
from CFD simulations. The evaluation of skewness and kurtosis is uti-
lized as a metric to assess the conformity of variables to a normal dis-
tribution. The level of normality exhibited by the variables is crucial as it 
greatly influences the complexity, time, and computational cost 
involved in the modeling process. Earlier studies [84–86] suggest that 
kurtosis in the range of − 2 to 2 and skewness in the range of − 1 to 1 can 
indicate Gaussian (normal) distribution. Considering both criteria 
simultaneously, TVP, φ, and Re have Gaussian distribution. Also, 
skewness shows a Gaussian distribution for TP and THP, while kurtosis 
shows a non-Gaussian distribution, meaning a slight distinction between 
their mean and median. In this case, these two variables have a 
non-normal distribution tending to normal. Fig. 5 depicts the cumulative 
distribution and the frequency histogram for the objectives, which can 
be considered a confirmation of the closeness of the objectives’ distri-
bution to the Gaussian type. 

In addition, Fig. 6 shows the effects of the shape of the perforations 
on the performance of the heat sinks through box plots. This visual 
representation clearly shows insights into the relationship between the 
types of perforations and each objective. Fig. 6 (a) illustrates the supe-
rior effectiveness of square perforations on thermo-hydraulic perfor-
mance (THP). According to the figure, the minimum THP value for 
PFHSs with square perforations is greater than the median value (middle 
line in the box) for PFHSs with other perforations. Furthermore, the 
median data value for heat sinks with square perforations is greater than 
the maximum THP value for heat sinks based on hexagonal and circular 
perforations. The performance of PFHSs with circular and hexagonal 
perforations is similar when considering the THP objective. Fig. 6 (b) 
reveals that the effect of the perforations’ shape on TVP is not signifi-
cant. Fig. 6 (c) illustrates the square perforations-based PFHSs’ thermal 
performance (TP) better than others. According to this objective, using 
circular perforations can result in less thermal efficiency. 

The Pearson correlation coefficient (PCC) is a criteria used to assess 
the degree and direction of the linear relationship between two vari-
ables. The PCC can take values between − 1 and +1. A value of +1 de-

Fig. 4. Comparison of CFD results with (a) experimental data by Jonsson and Moshfegh [83], and (b) numerical data by Shaeri et al. [45].  
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notes an ideal positive linear relationship, − 1 means an ideal negative 
linear relationship, and 0 signifies no linear relationship [87]. PCC is 
calculated through the following formula: 

Rp =

∑N

i=1
(Xi − X)(Yi − Yi)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

i=1
(Xi − X)2 ∑N

i=1
(Yi − Yi)

2

√ (28)  

where N, Xi, Yi, X, and Yi represents the number of data, input variables, 
objectives, mean of input variables, and mean of objectives, respec-
tively. 

Fig. 7 depicts the PCC value between design variables and objectives 
for various perforations’ shapes. According to the figure in PFHS with 
square perforations, the size of the perforations (φ) does not show a 
linear relationship with THP. For this type of perforation, THP with PCC 
equals − 0.87, strongly depends on the Reynolds number. Significant 
differences are observed in the PFHSs with square and circular/hexag-
onal perforations. The linear dependence of THP with the φ for the PFHS 
with circular and hexagonal perforations equals − 0.19 and − 0.14, 
respectively. Also, the linear relationship of these perforations with the 
Reynolds number is less than that of square perforations, and its value is 
− 0.82 and − 0.79 for circular and hexagonal cases, respectively. On the 
other hand, the linear relationship between TVP and input variables is 

Table 3 
Descriptive statistics of objectives and design variables.  

Variables Descriptive Statistics 

Minimum Maximum Mean Std. deviation Skewness Kurtosis 

Outputs THP 1.0919 1.1878 1.1427 0.0199 0.0512 2.781 
TVP 1.3952 2.1571 1.7141 0.2259 0.2570 1.862 
TP 1.0079 1.0946 1.0538 0.0188 − 0.2200 2.774 

Inputs φ 0.25 0.5 0.375 0.0857 2.95E-15 1.731 
Re 2000 5000 3500 1003.99 0 1.750 
PS Square, Circular, Hexagonal  

Fig. 5. The cumulative distribution and frequency histogram for (a) THP, (b) TVP, and (c) TP.  

Fig. 6. Box diagrams for (a) THP, (b) TVP, and (c) TP.  
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not significantly different for the different shapes of perforations. All 
types of heat sinks show a linear correlation, PCC = 0.99, between TVP 
and φ. In contrast, the linear relationship of this objective with the 
Reynolds number ranges from − 0.08 to − 0.12. TP for different PFHSs 
has a relatively balanced linear relationship with φ and Re. However, its 
linear relationship with Reynolds number is stronger than φ. TP shows 
the strongest linear relationship among PFHSs with Re and φ for square- 
type (− 0.85) and circular-type (− 0.59) PFHSs, respectively. However, it 
is essential to note that design variables can have a non-linear correla-
tion with objectives. Therefore, it would be imprudent to underestimate 
the importance of low-correlated variables. 

5. Machine learning modeling 

This study uses GMDH-NN and SMS techniques for ML-based 
modeling of objectives. GMDH-NN provides formula-based models 
using the advantages of neural networks, which have shown remarkable 
accuracy in previous research [50,88]. Despite demonstrating signifi-
cant potential in this research, the SMS algorithm has received less 
attention. In the rest of this section, these two algorithms will be 
introduced, and their results will be evaluated and interpreted in 
modeling various objectives. 

5.1. GMDH-type neural network (GMDH-NN) 

The development of artificial neural networks (ANNs) can be 

attributed to attempts to imitate the behavior of neurons in the human 
brain, which led to the emergence of computational models. ANNs are 
affected by the quality and quantity of input data despite their high 
accuracy in modeling highly non-linear and complex phenomena. In 
order to address data-related challenges, Ivakhnenko [89] introduced 
the group method of data handling (GMDH) neural networks. By uti-
lizing feed-forward neural networks, GMDH-NN not only diminishes 
reliance on data structure but also enhances modeling stability. A 
notable benefit of this ML-based technique is its ability to intelligently 
select effective sub-models through a self-organization process. 
GMDH-NN can generate formula-based models that exhibit reduced 
complexity while maintaining acceptable accuracy. According to the 
mentioned advantages, this technique has experienced significant 
growth in recent years [62,88,90]. 

In order to represent a complex phenomenon comprising M datasets, 
it is necessary to utilize a sophisticated function, symbolized as f , which 
establishes a connection between the inputs (xi1, xi2,…xin) and outputs 
yi in the following manner: 

yi = f (xi1, xi2,…xin) (i= 1, 2,…,M) (29) 

The GMDH-NN aims to create a function, symbolized as f̂ , that 
reasonably predicts the outputs. To achieve this purpose, the GMDH-NN 
technique seeks to minimize the difference between the real values (yi) 
and the estimated values (ŷi). This can be expressed mathematically as: 

ŷi = f̂ (xi1, xi2,…xin) (i= 1, 2,…,M) (30) 

Fig. 7. Correlograms of PCC between inputs and outputs for different types of perforation.  
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∑M

i=1
[ŷi − yi]

2 → min (31) 

Different degrees of the Kolmogorov-Gabor polynomial (Eq. (32)) 
[91] can be employed to designate a formula between the inputs and 
outputs. 

y= α0 +
∑n

i=1
αixi +

∑n

i=1

∑n

j=1
αijxixj +

∑n

i=1

∑n

j=1

∑n

k=1
αijkxixjxk + … (32) 

According to prior studies, it has been found that utilizing the 
quadratic form of Eq. (32) achieves an optimal trade-off between model 
accuracy and complexity [91]. The optimal form of GMDH-NN sub--
models is shown in Eq. (33). 

y=G
(
xi, xj

)
= a0 +α1xi + α2xj +α3xixj + α4x2

i + α5x2
j (33) 

It is essential to highlight that the estimation of sub-model co-
efficients is accomplished using the least-squares method [92]. 

The GMDH technique starts modeling by constructing an input layer, 
where each neuron describes an input variable. These neurons serve as 
the initial foundation for the subsequent layers. Neurons in the inter-
mediate layers are constructed by linking pairs of neurons from diverse 
layers utilizing quadratic polynomials, as defined by Eq. (33). This 
approach allows for extracting complex relationships and interactions 
between variables. A single neuron aggregates the information from the 
preceding layers to generate the final output in the output layer. The 
self-organizing procedure within GMDH concerns assessing the perfor-
mance of various neurons in the intermediate layers. Neurons that 
contribute positively to enhancing the efficiency and accuracy of the 
output model are retained, while those that do not meet the desired 
criteria are discarded. This selective retention ensures that only the most 
informative and relevant neurons are incorporated into the final model. 

5.2. Stepwise mixed selection (SMS) 

Stepwise selection is a regression technique based on selecting input 
variables or terms composed of the inputs that form a robust predictive 
model in a self-organizing process. Influential variables, terms, or sub- 
models that aid in enhancing the accuracy of the model are retained 
within the model, while those that are not highly effective based on 
statistical criteria are eliminated from the model. This process leads to 
maintaining valuable sub-models and ignoring less essential terms, 
which results in reducing the model’s complexity, improving its inter-
pretability, and making it applicable in real-world applications. This 
approach can be particularly helpful when handling extensive data and 
numerous variables. 

Stepwise regression has three approaches: stepwise forward selection 
(SFS), stepwise backward selection (SBS), and stepwise mixed selection 
(SMS). In the SFS approach, the model starts without any predictors, and 
sub-models are added to the model based on the specified accuracy 
threshold. This process continues until no other sub-model satisfies the 
target threshold. On the other hand, in the SBS approach, the modeling 
process starts by considering potential sub-models. It continues by 
eliminating the less important ones until the defined threshold does not 
lead to the elimination of another sub-model. The SMS approach com-
bines forward and backward selections, which is inherently more com-
plex. However, higher accuracy is one of its notable features. The 
modeling process in this study utilizes the SMS approach. 

In the present study, an improved version of the SMS approach is 
developed, which is able to lead to accurate models in four steps as 
follows.  

1. Production of various sub-models using the following relationships 
that provide significant diversity by combining input variables to 
increase accuracy in modeling. 

y=
∑n

i=1
βig(xi) (34)  

y=
∑n

i=1

∑n

j=1
βijg(xi) • g

(
xj
)

(35)  

y=
∑n

i=1

∑n

j=1
βijg(xi)

/
g
(
xj
)

(36) 

The function g applies a diverse set of operators on variables. In fact, 
the improved form of the variables joins the modeling process, which 
can record a better correlation with the outputs. These operators include 
square root, cube root, exponential, trigonometric, sigmoid, and so on.  

2. The least squares technique calculates the coefficients of the sub- 
models in the training process.  

3. The root mean square error (RMSE) validation measure compares 
sub-models’ accuracy throughout the validation procedure.  

4. The final model is created by mixing the most effective sub-models 
while ensuring the complexity remains within the specified limits. 

Due to the imposition of multiple sub-models and numerous operator 
functions, the SMS approach often incurs significant computational 
costs and tends to generate intricate models. To address this issue, it is 
necessary to limit the complexity of the model by restricting the number 
of permissible sub-models. Nevertheless, it is evident that reducing 
complexity results in a decrease in accuracy. Therefore, balancing ac-
curacy and complexity can be a serious challenge. Implementing a series 
of trial-and-error analyses for this objective can be very effective. 

5.3. Models development and assessment criteria 

Fig. 1 depicts the procedure of selecting optimal models for both 
modeling techniques. The whole search strategy (WSS) is employed to 
optimize hyper-parameters and make structural adjustments for ML 
techniques. Implementing WSS on the SMS approach leads to selecting 
the optimal operators for each input variable, finding the optimal sub- 
models based on the combination of variables, and determining the 
optimal number of additive sub-models. In addition, a trial and error 
analysis was implemented to find a reasonable complexity that leads to 
appropriate precision. This analysis indicated that a maximum of nine 
sub-models can achieve high accuracy. In fact, this limitation leads to 
the development of uncomplicated yet powerful models that can give 
high credibility to the optimization results. 

On the other hand, the GMDH-NN output models’ precision is 
strongly affected by the number of layers and neurons in each layer. 
GMDH-NN produces extremely complex models if these two parameters 
are not bound. To ensure a fair comparison between the two ML tech-
niques, they must have a similar level of complexity. Through trial and 
error analysis, it was determined that setting the number of layers to 2 
and the number of neurons in each layer to 1 can achieve an equivalent 
level of complexity to the SMS method. In addition to making the two 
methods comparable, these limitations lead to significant simplicity in 
the models that can be implemented in real-world applications. 

The CFD datasets in the modeling process are divided into two parts, 
which include 80% for training the models and the remaining 20% for 
evaluating the models and ranking them in the WSS process. For the fair 
implementation of the training and testing process, fixed train and test 
datasets are used for both algorithms. Also, a subset of the training data 
set is used for validation in the modeling process, whose task is to pre-
vent overtraining and evaluate the generalization ability of the models. 
The validation process employs a leave-one-out cross-validation 
approach. 

In order to evaluate and compare developed models, several statis-
tical criteria are used. These criteria use the number of data points (n), 
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CFD values (Yi,CFD), and predicted values (Yi,Pred) and are defined as 
follows [25,93,94]: 

Root mean squared error : RMSE=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑n

i=1

(
Yi,CFD − Yi,Pred

)2

√

(37)  

Mean absolute percentage error : MAPE(%)=
1
n
∑n

i=1

⃒
⃒
⃒
⃒
Yi,Pred − Yi,CFD

Yi,CFD

⃒
⃒
⃒
⃒× 100

(38)  

Correlation coefficient : R=

∑n

i=1

(
Yi,CFD − Yi,CFD

)(
Yi,Pred − Yi,Pred

)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1

(
Yi,CFD − Yi,CFD

)2 ∑n

i=1

(
Yi,Pred − Yi,Pred

)2
√

(39)  

Coefficient of determination : R2 = 1 −
∑n

i=1

(
Yi,Pred − Yi,CFD

)2

Y2
i,CFD

(40) 

The agreement degree between predicted and CFD data can be 
evaluated by utilizing the correlation coefficient (R) and coefficient of 
determination (R2), which have values ranging from 0 to 1. Higher 
values of R and R2 indicate more accurate models, while values closer to 
zero suggest an unreliable model. Furthermore, MAPE and RMSE offer 
valuable information about the errors in the models, and when these 
values approach zero, it indicates a high level of precision. 

5.4. Modeling results 

This sub-section presents the best output models from WSS applied to 
ML techniques for various objectives. The performance of both ML 
techniques for different perforations is evaluated using statistical 
criteria and regression graphs. Finally, the models that have the best 
accuracy are selected to participate in the optimization process. 

5.4.1. Thermo-hydraulic performance (THP) 
Table 4 presents different criteria for the best WSS-based ML models 

in predicting THP. According to the table, both models provide reliable 
results. However, the accuracy of the SMS approach in predicting THP is 
much better than GMDH-NN, especially in the case of PFHS with square 
perforations. In the testing phase, the SMS-based models show high 
correlation coefficient (R) values of 0.999743, 0.997620, and 0.996580 
for square, circular, and hexagonal perforations. GMDH-NN models 
achieve 0.995584, 0.994248, and 0.995475 R-values for square-, cir-
cular-, and hexagonal-based PFHS, respectively. 

The principal benchmark for comparing data-driven models is based 
on the results of the testing phase. Nevertheless, comparing the training 
phase results is not futile and can provide insights into the performance 
of the models during the training process. By comparing the outcomes of 
the training phase, it is clear that the SMS method, like the testing phase, 

is significantly superior to the GMDH-NN method. During the training 
phase, the SMS-based models show R-values of 0.999545, 0.998706, and 
0.998376 for PFHS with square, circular, and hexagonal perforations. In 
contrast, the GMDH-NN models demonstrate R-values of 0.989156, 
0.990946, and 0.985251 for square-, circular-, and hexagonal-based 
PFHS, respectively. 

Fig. 8 illustrates the values of the CFD data points compared to their 
predicted values by SMS and GMDH-NN techniques for the training and 
testing stages. A quick examination of Fig. 8 reveals that the SMS-based 
models’ results in all the perforations’ shapes deviate slightly from the Y 
= X line. This observation validates the strong correspondence between 
the actual and predicted values, indicating the high accuracy of these 
models. Table 5 presents the best models’ formula in predicting THP for 
various PSs. 

5.4.2. Thermo-volumetric performance (TVP) 
Table 6 presents the statistical criteria of the best SMS and GMDH- 

NN models for TVP prediction. The table’s findings indicate the SMS 
approach’s higher accuracy in predicting TVP for PFHSs with square (R 
= 0.999996) and circular (R = 0.999934) perforations. Meanwhile, the 
GMDH-NN method with an R-value of 0.999966 slightly better predicts 
PFHSs with hexagonal perforations than the SMS approach (R =
0.999939). The visible trend is different in the training phase, where the 
SMS method performs much better than the GMDH-NN method in pre-
dicting the THP of perforated finned heat sinks with square (R =
0.999991), circular (R = 0.999944) and hexagonal (R = 0.999990) 
perforations. 

Fig. 9 depicts the regression plots of the best SMS and GMDH-NN 
models in TVP prediction. As can be seen, the testing and training 
data points in both approaches have high compliance with the Y = X 
line, indicating the high reliability of both models. However, focusing on 
the figure’s details indicates the deviation of several data points of 
GMDH-NN from the Y = X line, especially in cases with square and 
circular perforations. Table 7 shows the developed relationships be-
tween TVP and inputs for the top models predicting TVP. 

5.4.3. Thermal performance (TP) 
Table 8 presents the value of statistical criteria in the testing and 

training stages for evaluating TP predictive models for the SMS and 
GMDH-NN methods. Both approaches demonstrate satisfactory accu-
racy; however, as seen in the previous objective, the SMS method out-
performs in predicting the TP of heat sinks with square and circular 
perforations. While for heat sinks with hexagonal perforations, the 
GMDH-NN has a higher ability. The SMS-based model for cases with 
square, circular, and hexagonal perforations provides the R-value of 
0.999592, 0.992566, and 0.995796, respectively. In contrast, the 
GMDH-NN model reports values of 0.998366, 0.990823, and 0.998058, 
respectively. During the training phase, the SMS method displays lower 
error rates in TP-values prediction. The R-values of 0.999673, 0.995510, 
and 0.999290 in the training stage are reported for heat sinks based on 
square, circular, and hexagonal perforations, respectively. Nevertheless, 

Table 4 
Statistical criteria of the best SMS and GMDH-NN models for THP prediction.  

Data PS ML method RMSE MAPE (%) R R2 

Testing 
Dataset 

Square SMS 0.000331 0.02458 0.999743 0.999387 
GMDH 0.001634 0.09553 0.995584 0.985040 

Circular SMS 0.001449 0.08925 0.997620 0.992566 
GMDH 0.002810 0.15055 0.994248 0.972034 

Hexagonal SMS 0.001228 0.08350 0.996580 0.991245 
GMDH 0.001336 0.09339 0.995475 0.989641 

Training 
Dataset 

Square SMS 0.000405 0.02880 0.999545 0.999090 
GMDH 0.001973 0.13711 0.989156 0.978430 

Circular SMS 0.000832 0.05665 0.998706 0.997413 
GMDH 0.002195 0.15883 0.990946 0.981975 

Hexagonal SMS 0.000717 0.05529 0.998376 0.996754 
GMDH 0.002153 0.16013 0.985251 0.970719  
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R-values for GMDH-NN models are equal to 0.997602, 0.993577, and 
0.997399, respectively. 

Fig. 10 compares the compliance level of predicted values for TP 
with actual values for all data points using the two ML methods. Ac-
cording to Fig. 10 (a), it is clear that for the heat sinks with square 
perforations, the data points in the SMS approach have less deviation 
from the Y = X line, which shows its higher precision compared to 
GMDH-NN. Fig. 10 (b) depicts a significant similarity between the dis-
tributions of data points of both methods for PFHSs with circular per-
forations. However, the data points of the SMS approach yield less error. 
Fig. 10 (c) displays the performance of two ML methods for heat sinks 
based on hexagonal perforations. According to the figure, the SMS 
method develops a low error model in the training phase. However, it 
does not perform well in the evaluation stage, and the predictive model 
obtained from the GMDH-NN indicates a better performance. Table 9 
presents the best TP predictive models for different PSs. 

6. Multi-objective optimization 

The optimization of the perforated finned heat sink defined in the 
present research relies on the maximization of three redefined dimen-
sionless objectives. In fact, maximizing the three objectives leads to 
maximizing the HTR, minimizing the volume (weight) of the heat sink, 

Fig. 8. The regression plots of the best SMS and GMDH-NN models for THP prediction.  

Table 5 
The formula of the optimal ML models for THP prediction.  

PS Best ML 
method 

Formula 

Square SMS THPSquare = 1.42404+ Re1/3 ∗ ln Re ∗ 0.00924377+

φ ∗ ln φ ∗ ( − 1.07833)+ sin (Re) ∗ cos (Re) ∗ ( −
0.0060223) + φ ∗ Re2 ∗ 1.59589e − 08+ ln Re ∗
cos (φ) ∗ ( − 0.18117)+ Re ∗ eφ ∗ ( − 0.00011019)+
Re1/3 ∗ ln φ ∗ ( − 0.00440047)+ sin (Re) ∗ cos (φ) ∗
0.00092409 

Circular SMS THPCircular = 1.03358+ Re ∗ eφ ∗ 3.42215e − 05+ Re ∗
φ1/3 ∗ 2.14718e − 06+ φ2 ∗ 0.417151+ Re ∗ Re1/3 ∗ ( −

1.58281e − 06)+ Re1/3 ∗ sin (φ) ∗ 0.660363+ φ ∗

Re1/3 ∗ ( − 0.556406)+ sin (Re) ∗ cos (Re) ∗ ( −
0.0079316) + Re1/2 ∗ sin (φ) ∗ ( − 0.0254571)

Hexagonal SMS THPHexagonal = − 12.6156+ Re ∗ φ1/3 ∗ 0.000179339+

φ2 ∗ 71.5597+ Re ∗ Re1/2 ∗ ( − 8.556e − 07)+
sin (Re) ∗ cos (Re) ∗ ( − 0.00834486)+ φ ∗ cos (φ) ∗
41.9974+ φ ∗ Re1/3 ∗ ( − 0.110057)+ φ ∗ φ1/3 ∗ ( −

99.4513)+ eφ ∗ cos (φ) ∗ 12.0258  
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and minimizing the pressure drop (friction coefficient). Hence, it is 
advisable to search for circumstances where the design variables align in 
a way that optimizes all three objectives simultaneously. For this pur-
pose, multi-objective optimization based on the Pareto front is a reliable 
solution. In contrast to traditional methods that identify a single optimal 
value, the Pareto approach suggests a set of optimal points, offering a 

range of possible solutions. These points do not have a superiority over 
each other, and their distinction lies in the relative significance of the 
objectives. The designer is responsible for selecting the optimal point to 
incorporate into the design based on the relative importance of the 
objectives. In the rest of this section, the well-known and widely used 
NSGA-II algorithm presented by Deb et al. [95] is introduced and used to 

Table 6 
Statistical criteria of the best SMS and GMDH-NN models for TVP prediction.  

Data PS ML method RMSE MAPE (%) R R2 

Testing 
Dataset 

Square SMS 0.000798 0.03960 0.999996 0.999989 
GMDH 0.004892 0.21798 0.999854 0.999576 

Circular SMS 0.002675 0.13673 0.999934 0.999861 
GMDH 0.008814 0.36167 0.999382 0.998493 

Hexagonal SMS 0.002667 0.08578 0.999939 0.999869 
GMDH 0.002138 0.10960 0.999966 0.999916 

Training 
Dataset 

Square SMS 0.000955 0.04413 0.999991 0.999982 
GMDH 0.003176 0.15024 0.999902 0.999804 

Circular SMS 0.002286 0.10667 0.999944 0.999888 
GMDH 0.004977 0.21868 0.999735 0.999470 

Hexagonal SMS 0.001025 0.05040 0.999990 0.999979 
GMDH 0.002621 0.12632 0.999931 0.999863  

Fig. 9. The regression plots of the best SMS and GMDH-NN models for TVP prediction.  
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determine Pareto optimal points. 

6.1. Non-dominated sorting genetic algorithm II (NSGA-II) 

NSGA-II is an evolutionary algorithm that effectively overcomes the 
limitations of prior algorithms by integrating various crucial features, 
including.  

1. Non-Dominated Sorting: NSGA-II employs a non-dominated sorting 
approach to classify individuals into distinct fronts, considering their 
dominance relationships. This approach ensures the preservation of a 
diverse range of solutions.  

2. Crowding Distance: NSGA-II incorporates the concept of crowding 
distance as a metric to maintain the diversity of solutions within each 
front. This technique guarantees that solutions are evenly spread 
across the Pareto front, promoting a balanced representation.  

3. Elitism: NSGA-II integrates elitism by transferring the top- 
performing individuals from generation to generation. This mecha-
nism ensures the preservation of the best solutions and prevents 
premature algorithm convergence.  

4. Tournament Selection: In NSGA-II, tournament selection compares a 
random subset of individuals based on their fitness values. This 
approach guarantees a fair selection procedure and promotes the 
exploration of the search space by considering a diverse range of 
individuals.  

5. Genetic Operators: NSGA-II utilizes typical genetic operators, such as 
mutation and crossover, to generate new offspring solutions. These 
operators play a crucial role in effectively exploiting and exploring 
the search space, allowing for the discovery of potentially optimal 
solutions.  

6. Pareto Dominance: NSGA-II employs Pareto dominance to compare 
potential optimal points. This technique guarantees that the obtained 
solutions considering all objectives do not dominate each other, 
which results in a set of non-dominated solutions. 

For more detailed information, readers can refer to the work of Deb 
et al. [95]. Fig. 11 provides a visual representation of the step-by-step 
optimization process employed by the NSGA-II algorithm. The 

mathematical formulation of the current multi-objective optimization 
problem is as follows: 

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Maximize THP = f1(Re,φ)

Maximize TVP = f2(Re,φ)

Maximize TP = f3(Re,φ)

Subject to

{
0.25 ≤ φ ≤ 0.5 (Real)

2000 ≤ Re ≤ 5000 (Real)
for various PFs

(41)  

6.2. MOO results 

Fig. 12 depicts the Pareto fronts for PFHSs based on different per-
forations’ shapes regarding various objectives. As it is known, the 
different shapes of the perforations provide a wide range of optimal 
points, each of which achieves optimization conditions according to the 
relative importance of the objectives. Since the optimal design means 
maximizing all three objectives, with a quick look at Fig. 12, it can be 
seen that heat sinks based on square perforations provide more signifi-
cant performance than other PFHSs. This is because the square-based 
PFHSs demonstrate a tendency for their Pareto points to approach the 
upper right region, which represents the region of ideal solutions. Ac-
cording to this preliminary analysis, PFHSs with circular and hexagonal 
perforations reveal similar performance due to the entanglement of their 
Pareto points. By analyzing the optimal points’ distribution with respect 
to the input variables, as depicted in Fig. 13, one can gain a holistic 
comprehension of the variations in the optimal values of the design 
variables. 

Fig. 13 shows the optimal range for design variables (Re and φ) for 
different types of PFHSs. As can be seen, the optimal points of PFHS with 
square perforations indicate the value of φ in the range of 0.36–0.5. 
While φ-value in the optimal points of heat sinks based on circular and 
hexagonal perforations are distributed in the range of 0.25–0.5 and 0.33 
to 0.5, respectively. These values indicate that heat sinks featuring 
square perforations exhibit optimal points concentrated within a nar-
rower φ range. In contrast, heat sinks based on circular perforations 
provide optimal points in all possible spaces for φ. On the other hand, 
the Reynolds number experiences a minimal range of optimal values for 

Table 7 
The formula of the optimal ML models for TVP prediction.  

PS Best ML 
method 

Formula 

Square SMS TVPSquare = 5.73484+ φ ∗ sin (φ) ∗ ( − 34.8264)+ φ ∗ Re1/2 ∗ ( − 0.684225)+ sin (φ) ∗ Re1/2 ∗ 0.0685165+ φ ∗ Re ∗ 0.00149137+ φ ∗ eφ ∗ 14.6994+

φ1/3 ∗ ( − 13.7521)+ Phi ∗ Re1/3 ∗ 2.5252+ Re ∗ cos (Re) ∗ 3.97945e − 07 
Circular SMS TVPCircular = − 7934.97+ φ2 ∗ 3371.32+ φ ∗ Re1/2 ∗ 0.0877912+ Re1/2 ∗ sin (φ) ∗ ( − 0.107858)+ (cos (Re))2

∗ 0.00271193+ Re ∗ cos (Re) ∗
6.28213e − 07+ cos (φ) ∗ 9145.66+ (cos (φ))2

∗ ( − 1209.49)+ Re2 ∗ 4.3975e − 09 
Hexagonal GMDH-NN TVPHexagonal = 0.558082 + φ ∗ 1.71864 − φ ∗ f ∗ 0.932039 + f2 ∗ 0.377632 f(φ,Re) = 1.21893+ φ ∗ 0.538422 − φ ∗ Re ∗ 7.55698e − 05+ φ2 ∗

3.1362 − Re ∗ 5.52982e − 05+ Re2 ∗ 9.51404e − 09  

Table 8 
Statistical criteria of the best SMS and GMDH-NN models for TP prediction.  

Data PS ML method RMSE MAPE (%) R R2 

Testing 
Dataset 

Square SMS 0.000502 0.03749 0.999592 0.999114 
GMDH 0.001385 0.11580 0.998362 0.993245 

Circular SMS 0.002218 0.18928 0.992566 0.983757 
GMDH 0.002892 0.21669 0.990823 0.972385 

Hexagonal SMS 0.001587 0.08626 0.995796 0.986031 
GMDH 0.001318 0.10406 0.998058 0.990358 

Training 
Dataset 

Square SMS 0.000488 0.03617 0.999673 0.999345 
GMDH 0.001318 0.09208 0.997602 0.995223 

Circular SMS 0.001905 0.13912 0.995510 0.991039 
GMDH 0.002277 0.16714 0.993577 0.987195 

Hexagonal SMS 0.000562 0.04616 0.999290 0.998580 
GMDH 0.001075 0.08534 0.997399 0.994804  
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different types of PFHS. Reynolds optimum points for square-based 
PFHS are in the range of 2000<Re<2004. For circular-based PFHSs, 
the value of Reynolds number of optimal points changes in an extremely 
limited range, between two values of 2000 and 2001. In addition, 
Reynolds’ optimum points for heat sinks with hexagonal perforations 
are reported to be similar to the square-based case. 

Focusing on the details of the Pareto front indicates the presence of 
54% of Pareto points in φ-values greater than 0.45 for PFHSs with square 
perforations. Meanwhile, for circular and hexagonal perforations, 26% 
and 33% of Pareto points are present in the mentioned range, respec-
tively. This finding proves the possibility of recognizing the heat sink as 

the optimal case by increasing the size of the square perforations. The 
reverse of this trend is evident for circular perforations, where more than 
50% of the optimal points have φ less than 0.4. This report highlights the 
dependence of the perforations’ size on their shape in optimal 
conditions. 

According to Fig. 13, the optimal Reynolds number experiences an 
almost constant value around the minimum possible value (2000). 
Meanwhile, the optimal points accept a wide range of φ. By increasing 
the size of the perforations at the optimal points, the THP first increases 
and then decreases. The highest yield for THP is obtained at the value of 
1.1875, whose φ equals 0.43. Meanwhile, the maximum efficiency of 

Fig. 10. The regression plots of the best SMS and GMDH-NN models for TP prediction.  

Table 9 
The formula of the optimal ML models for TP prediction.  

PS Best ML 
method 

Formula 

Square SMS TPSquare = 0.626898+ eφ ∗ Re1/2 ∗ 0.00529239+ sin (Re) ∗ cos (Re) ∗ ( − 0.00486598)+ cos (φ) ∗ φ1/3 ∗ 1.1262+ sin (φ) ∗ Re1/3 ∗ ( − 0.0966089)+
Re ∗ cos (Re) ∗ 2.55341e − 07+ cos (φ) ∗ Re1/3 ∗ ( − 0.0261962)+ sin (φ) ∗ cos (φ) ∗ 0.308208+ φ ∗ Re ∗ 1.84236e − 05 

Circular SMS TPCircular = 1.13382+ φ ∗ Re ∗ ( − 0.280548)+ (sin (φ))2
∗ 0.00205578+ sin (Re) ∗ cos (Re) ∗ ( − 0.00504611)+ Re ∗ sin (φ) ∗ 0.180209+ Re ∗ eφ ∗

0.098701+ Re ∗ cos (φ) ∗ 0.0840893+ Re ∗ ( − 0.182692)+ Re2 ∗ 3.57856e − 09 
Hexagonal GMDH-NN TPHexagonal = − 2.05461 − Re ∗ 3.37295e − 06 + Re2 ∗ 4.16084e − 10 + f ∗ 4.934 − f2 ∗ 1.87686 f(φ,Re) = 1.06647+ φ ∗ 0.514015 − φ ∗ Re ∗

2.78355e − 05 − φ2 ∗ 0.677185 − Re ∗ 4.12215e − 05+ Re2 ∗ 5.93531e − 09  
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THP for circular- and hexagonal-based PFHSs is 1.163 and 1.159, 
respectively, which occurs at φ equal to 0.42 and 0.44. Moreover, based 
on the results presented in Fig. 13, regardless of the shape of the per-
forations, TVP and TP reach their maximum efficiency at the highest and 
lowest possible optimal φ-value, respectively. 

7. Multi-Criteria Decision-Making 

Designers are confronted with a formidable challenge when making 
decisions about design options from the array of solutions proposed by 
the Pareto fronts. MCDM techniques such as TOPSIS and VIKOR can 
effectively address this issue. These procedures rely on an aggregation 

approach that assesses the proximity to the ideal point. Nevertheless, 
there is a differentiation between these techniques concerning their 
normalization processes. VIKOR implements linear normalization for 
the objectives, whereas TOPSIS employs Euclidean normalization. 
Numerous sources [96–99] have extensively investigated and docu-
mented the effectiveness of both approaches through comprehensive 
research studies. 

7.1. TOPSIS approach 

The TOPSIS method utilizes a sequential process for ranking alter-
natives, which includes the following steps.  

1. Forming the decision-making matrix (DMM): (xij)m×n.  
2. Normalizing DMM using the Euclidean approach: 

R = (rij
)

m×n, rij =
xij
̅̅̅̅̅̅̅̅̅̅̅
∑m

k=1
x2

kj

√ i= 1, 2,…,m j= 1, 2,…, n (42)    

3. Weighting to the DMM: 

Sij = rij • wj, i = 1, 2,…,m j = 1, 2,…, n (43)    

4. Identifying the best and worst alternatives: 

Abest =
{

〈min
(
tij
⃒
⃒i= 1, 2,…,m

)⃒
⃒j∈ J− 〉, 〈max

(
tij
⃒
⃒i= 1, 2,…,m

)⃒
⃒j∈ J+〉

}

≡
{

tbj
⃒
⃒j= 1, 2,…, n

}

(44)  

Aworst =
{

〈max
(
tij
⃒
⃒i= 1, 2,…,m

)⃒
⃒j∈ J− 〉, 〈min

(
tij
⃒
⃒i= 1, 2,…,m

)⃒
⃒j∈ J+〉

}

≡
{

twj
⃒
⃒j= 1, 2,…, n

}

(45)  

where 

Fig. 11. Flowchart of NSGA-II algorithm.  

Fig. 12. Pareto optimal points for LPFHSs with various perforation types.  
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J+ ={j= 1, 2,…, n|j}, J− = {j= 1, 2,…, n|j} (46)  

J+ and J− represent the criteria with positive and negative impacts.  

5. Calculating each alternative’s Euclidean distance according to the 
worst and best solution. 

Di,worst =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

j=1

(
tij − twj

)2

√
√
√
√ ,Di,best =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

j=1

(
tij − tbj

)2

√
√
√
√ , i= 1, 2,…,m (47)    

6. Ranking alternatives: 

Si,worst =
Di,worst

Di,best + Di,worst
, 0 ≤ Si,worst ≤ 1, i = 1, 2,…,m (48) 

The TOPSIS determines the best alternative by selecting the design 
point with the highest Si,worst value. 

Fig. 13. Distribution of optimal points of (a) THP, (b) TVP, and (c) TP for various values of Re, PS and φ.  
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7.2. VIKOR approach 

The VIKOR method employs a sequential process for ranking alter-
natives, which consists of the following steps.  

1. Creating DMM ((xij)m×n) similar to the TOPSIS.  
2. Identifying the best and worst alternatives: 

When j-th criterion is positive: 

f ∗j =max
[(

xij
)⃒
⃒i= 1, 2,…,m

]
, j= 1, 2,…, n (49)  

f −j =min
[(

xij
)⃒
⃒i= 1, 2,…,m

]
, j= 1, 2,…, n (50)  

When j-th criterion is negative: 

f ∗j =min
[(

xij
)⃒
⃒i= 1, 2,…,m

]
, j= 1, 2,…, n (51)  

f −j =max
[(

xij
)⃒
⃒i= 1, 2,…,m

]
, j= 1, 2,…, n (52)    

3. Weighting criteria by defining two parameters of utility measure (Si) 
and regret measure (Ri): 

Ri =max

[

wj •
f ∗j − xij

f ∗j − f −j

]

, j= 1, 2,…, n, i= 1, 2,…,m (53)  

Si =
∑n

j=1
wj •

f ∗j − xij

f ∗j − f −j
, j = 1, 2,…, n, i = 1, 2,…,m (54)    

4. Ranking alternatives using VIKOR index (Qi): 

5. Qi = v •
Si − S∗

S− − S∗
+ (1 − v) •

Ri − R∗

R− − R∗
, i = 1, 2,…,m (55)  

where 

S∗ =min[Si|i= 1, 2,…,m], S− =max[Si|i= 1, 2,…,m] (56)  

R∗ =min[Si|i= 1, 2,…,m], R− =max[Si|i= 1, 2,…,m] (57)  

In order to create a procedure that balances utility and regret criteria, 
the value of v is set to 0.5. The superior alternative is determined by 
identifying the alternative with the lowest VIKOR index. 

7.3. MCDM-based desirable points 

While a changeover in the Pareto front points does cause a shift in the 
design variables and objective values, it does not necessarily result in an 
enhanced design point. Therefore, moving from one point to another on 
the Pareto front changes the relative importance of the objectives. In 
such a scenario, when faced with multiple available solutions, the 
designer must make a principled decision using MCDM techniques. 
MCDM approaches help the designer choose the desirable optimal points 
by assigning weight or importance coefficients to different objectives. 

Table 10 presents the single-objective and MCDM-based desirable 
points for different weights of objectives. In addition, the optimal points 
presented in Table 10 are shown graphically on the Pareto fronts in 
Fig. 14. Table 10 clearly reveals that all the proposed design points have 
square perforations and Reynolds numbers around 2000 regardless of 
whether the decision-making is based on one, two or three objectives. 
From this initial analysis, it can be inferred that the perforations’ size (φ) 
is the sole design variable influencing the distinction between various 
DM-based designs. 

The importance of considering the single-objective design of the 
current PFHS should not be underestimated. Indeed, each individual 
redefined objective holds substantial importance as a criterion in the 
design of each heat sink. As an illustration, in the single-objective design 
of PFHS utilizing THP, both the HTR and pressure drop are simulta-
neously considered, which is acceptable to be adequate in numerous 
practical applications. Moreover, with the TVP-based single-objective 
design of PFHS, it becomes possible to optimize both the HTR and the 
volume of the heat sink. Also, in many practical applications where heat 
dissipation is the main priority, the TP-based single-objective design is 
accomplished without considering the heat sink volume and pressure 
drop. 

Point A is the optimal solution for THP-based single-objective design. 
The value of φ at this point is equal to 0.43, which achieves the optimal 
balance between increasing heat transfer and decreasing pressure drop 
with large-size perforations. Considering the single-objective design 
based on TVP (point B), the optimal design includes the largest possible 
size for perforations (φ = 0.5). This design offers the lightest heat sink 
with acceptable thermal performance. On the other hand, a single- 
objective design based on TP (point C) suggests a desirable design 
with φ = 0.36. This intermediate φ-value indicates the maximization of 
thermal performance in the average perforations’ size. 

Point D shows the two-criteria decision-making based on THP and 
TVP with TOPSIS and VIKOR methods, which leads to φ-values of 0.5 
and 0.494, respectively. Both MCDM techniques suggest the optimal 
points for the design, which have the largest perforations’ volume. This 

Table 10 
Single-Objective and MCDM-based desirable points for different weights of objectives.  

DM methods Points Weight Input variables Objectives 

THP TVP TP φ Re PS THP TVP TP 

Single-Objective A 1 0 0 0.4318 2000 square 1.1875 1.9171 1.0895 
B 0 1 0 0.5 2004.3 square 1.1839 2.1580 1.0786 
C 0 0 1 0.3586 2000 square 1.1834 1.7070 1.0951 

TOPSIS Two-Objectives DT 1 1 0 0.5 2004.3 square 1.1839 2.1580 1.0786 
ET 1 0 1 0.3915 2000.1 square 1.1862 1.7971 1.0938 
FT 0 1 1 0.5 2004.3 square 1.1839 2.1580 1.0786 

Three-Objectives GT 1 1 1 0.5 2004.3 square 1.1839 2.1580 1.0786 
HT 3 1 1 0.4984 2000.3 square 1.1842 2.1507 1.0790 
IT 1 3 1 0.5 2004.3 square 1.1839 2.1580 1.0786 
JT 1 1 3 0.4984 2000.3 square 1.1842 2.1507 1.0790 

VIKOR Two-Objectives DV 1 1 0 0.4937 2000.2 square 1.1846 2.1324 1.0797 
EV 1 0 1 0.3855 2001.0 square 1.1858 1.7797 1.0942 
FV 0 1 1 0.4507 2000.7 square 1.1872 1.9777 1.0867 

Three-Objectives GV 1 1 1 0.4507 2000.7 square 1.1872 1.9777 1.0867 
HV 3 1 1 0.4507 2000.7 square 1.1872 1.9777 1.0867 
IV 1 3 1 0.4984 2000.3 square 1.1842 2.1507 1.0790 
JV 1 1 3 0.4115 2000.0 square 1.1872 1.8551 1.0920  
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high volume leads to an increase in hydraulic and weight efficiency. 
Point E makes the two objectives of THP and TP the basis for decision- 
making. Both TOPSIS and VIKOR methods suggest a φ-value of about 
0.39, which has a satisfactory hydraulically and thermally effective 
balance. At point F, which considers the importance of TVP and TP, the 
perforations volume ratio for the proposed TOPSIS technique (φ = 0.5) 
is higher than that of VIKOR (φ = 0.45). 

Three-criteria decision-making is implemented in four different 
scenarios. In the first scenario, each objective is given equal weight 
(WTHP = WTVP = WTP = 1). In the other three scenarios, the weight of 
each objective is three times the other two objectives. Point G describes 
a scenario where all three objectives have equal weight. In this case, the 
TOPSIS method (φ = 0.5) finds a larger perforations’ volume than the 
VIKOR method (φ = 0.45). This trend can be seen in three other sce-
narios. At point H, where THP has more weight than the other two ob-
jectives, the TOPSIS (φ = 0.4984) recognizes that the perforations’ 
volume close to the maximum is desirable. At the same time, VIKOR (φ 
= 0.4507) suggests a smaller value than the TOPSIS. Also, at point I, 
where TVP becomes very important, the TOPSIS method (φ = 0.5) and 
VIKOR (φ = 0.4984) recommend the maximum possible volume for 
perforations. Finally, by assigning an importance coefficient of three to 
the TP, point J highlights a significant difference in the perforations 

volume ratio between the PFHS proposed by TOPSIS (φ = 0.4984) and 
VIKOR (φ = 0.4115). 

8. Conclusion 

Designing high-efficiency heat sinks presents a considerable chal-
lenge in thermo-fluid engineering. Using longitudinal and lateral per-
forations is an exceptionally effective and innovative approach to 
optimizing heat sinks for diverse equipment applications. Implementing 
this approach results in the simultaneous enhancement of heat dissipa-
tion, pressure drop, and weight of heat sinks, which are essential ob-
jectives that designers must consider when designing heat sinks. To 
highlight the significance of the optimized design of PFHSs, the present 
authors have introduced a novel hybrid strategy that combines 
computational fluid dynamics, machine learning, multi-objective opti-
mization, and multi-criteria decision-making. The primary objective of 
the present study is to offer adaptable and optimized solutions with 
respect to the significance of various objectives. The geometric design 
variables encompass the size and shape of the perforations, whereas the 
Reynolds number is an input variable that pertains to the fluid flow. The 
design objectives are reformulated as dimensionless representations of 
heat dissipation, pressure drop, and heat sink weight. These revised 

Fig. 14. Single-Objective and MCDM-based desirable points on the Pareto fronts.  
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objectives contain thermal performance, thermo-hydraulic perfor-
mance, and thermo-volumetric performance. The groundbreaking 
design process employed in the present investigation has the potential to 
not only revolutionize the design of heat sinks but also transform various 
engineering and industrial phenomena. 

The key discoveries of this research can be summarized as follows.  

• Both stepwise mixed selection (SMS) and GMDH-NN techniques 
exhibited comparable performance in most modeling scenarios. 
Nevertheless, the SMS approach demonstrated more reliability in 
modeling diverse objectives. 

• The SMS method outperformed the GMDH-NN technique in pre-
dicting THP, achieving R-values of 0.999743, 0.997620, and 
0.996580 for PFHS with square, circular, and hexagonal cross- 
sectional perforations, respectively. 

• The TVP models based on the SMS method indicated the most reli-
able correlation coefficient values of 0.999996 and 0.999934 for 
PFHS with square and circular perforations, respectively. The supe-
riority of GMDH-based models compared to SMS models was evident 
for hexagonal-based PFHSs with R = 0.999966.  

• The SMS method in the TP modeling process yielded the highest R- 
values of 0.999592 and 0.992566 for square and circular cross- 
sectional perforations. In contrast, GMDH-NN (R = 0.998058) per-
formed better than SMS for PFHSs with hexagonal perforations. 

• The optimization results showed that the optimal size of the perfo-
rations is strongly dependent on their shapes. For example, in PFHSs 
with square perforations, approximately 54% of the Pareto points 
had a φ-value greater than 0.45. While in PFHSs based on circular 
perforations, more than 50% of the optimal points have φ less than 
0.4.  

• By exploring different weighting scenarios in the MCDM process, 
PFHSs with square perforations and Reynolds numbers of 

approximately 2000 across a wide range of perforations’ sizes could 
lead to optimal designs. 

In future studies, the proposed hybrid method can be extended to 
optimize perforated fins in heat sinks with different types of fin geom-
etries, including radial, annular, and pin-shaped fins. Furthermore, by 
applying the proposed method to a wide range of constant Reynolds 
numbers, valuable insights can be gained regarding optimal configura-
tions under varying fluid velocities. 
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Nomenclature 

ΔA area (m2) 
Cp specific heat at constant pressure (J kg− 1 K− 1) 
D fin thickness (m) 
FF friction drag (N) 
FP pressure drag (N) 
FT total drag (N) 
h heat transfer coefficient (W m− 2 K− 1) 
H fin height (m) 
k turbulent kinetic energy (m2 s− 2) 
L fin length (m) 
Nu Nusselt number (-) 
P fluid pressure (Pa) 
q the heat transfer rate (W) 
Rth thermal resistance (K W− 1) 
Re Reynolds number (-) 
T temperature (K) 
u velocity component in the X direction (m s− 1) 
v velocity component in the Y direction (m s− 1) 
w velocity component in the Z direction (m s− 1) 
W weight of fin (kg) 
V fin volume (m3) 
X,Y,Z rectangular coordinates (m)  

Subscripts 
b fin base 
eff effective 
DS downstream 
in inlet 
pf perforated fin 
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s the surface of the fin 
sf solid fin 
US upstream 
∞ free stream  

Greek symbols 
ε turbulent dissipation rate (m2 s− 3) 
μ fluid viscosity (kg m− 1 s− 1) 
μt turbulent viscosity (kg m− 1 s− 1) 
ρ fluid density (kg m− 3) 
λ Thermal conductivity of fluid (W m− 1 K− 1) 
λt turbulent thermal conductivity of fluid (W m− 1 K− 1) 
σ Heat transfer surface ratio (-) 
τw wall shear stress (Pa) 
φ Perforations volume ratio (-)  

Abbreviations 
ADC Average Drag Coefficient 
AI Artificial Intelligence 
ANN Artificial Neural Network 
ANuN Average Nusselt Number 
CFD Computational Fluid Dynamics 
COMBI Combinatorial algorithm 
FVM Finite Volume Method 
GMDH Group Method of Data Handling 
HTE Heat Transfer Enhancement 
HTR Heat Transfer Rate 
MAPE Mean Absolute Percentage Error 
MCDM Multi-Criteria Decision-Making 
ML Machine Learning 
MOO Multi-objective Optimization 
NSGA-II Non-Dominated Sorting Genetic Algorithm II 
PFHS Perforated Finned Heat Sink 
PS Perorations Shape 
RMSE Root Mean Square Error 
SFHS Solid Finned Heat Sink 
THP Thermo-hydraulic Performance 
TP Thermal Performance 
TVP Thermo-volumetric Performance 
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