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A B S T R A C T

The synergy between deep learning and meta-heuristic algorithms presents a promising avenue for tackling the
complexities of energy-related modeling and forecasting tasks. While deep learning excels in capturing intricate
patterns in data, it may falter in achieving optimality due to the nonlinear nature of energy data. Conversely,
meta-heuristic algorithms offer optimization capabilities but suffer from computational burdens, especially with
high-dimensional data. This paper provides a comprehensive review spanning 2018 to 2023, examining the
integration of meta-heuristic algorithms within deep learning frameworks for energy applications. We analyze
state-of-the-art techniques, innovations, and recent advancements, identifying open research challenges.
Additionally, we propose a novel framework that seamlessly merges meta-heuristic algorithms into deep
learning paradigms, aiming to enhance performance and efficiency in addressing energy-related problems.
The contributions of the paper include:
1. Overview of recent advancements in MHs, DL, and integration.
2. Coverage of trends from 2018 to 2023.
3. Introduction of Alpha metric for performance evaluation.
4. Innovative framework harmonizing MHs with DL for energy problems.
1. Introduction

The year 2021 saw a significant increase in renewable electricity
generation, with a growth rate of 5.4%, or 402 TWh higher than the
previous year [1]. This growth rate surpassed that of 2020, largely
due to a sharp increase in renewable electricity generation in Asia.
Overall, renewable energy sources generated a total of 7858 TWh of
electricity in 2021. Renewable hydro was the largest contributor at
55%, with 4275 TWh, followed by wind energy at 23% with 1838 TWh,
solar energy at 13% with 1034 TWh, bioenergy at 8% with 615 TWh,
geothermal energy at 1% with 95 TWh, and marine energy at less than
1% with 1 TWh.

∗ Corresponding author.
E-mail address: eghbal.hosseini@uniten.edu.my (E. Hosseini).

Solar and wind generation were the main drivers behind growth
in the renewable energy sector, with increases of 23% and 16%, re-
spectively. Together, they accounted for 80% of growth since 2017.
Additionally, renewable hydropower generation fell by 82 TWh in
2021, compared to 120 TWh in 2019–20. Fig. 1 illustrates the compre-
hensive breakdown of renewable energy sources in 2021, encompassing
hydro generation, solar power, wind generation, bioenergy generation,
geothermal energy, and marine energy, categorized by continent. Fig. 2
displays the Regulatory Indicators for Sustainable Energy (RISE) and
the overall renewable energy scores for 2021 across various countries.
Here are the top ten countries in this ranking: Denmark, Germany,
South Korea, United Kingdom, Hungary, Ireland, Portugal, Austria,
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List of Abbreviations

EAs Energy Applications
RNN Recurrent Neural Networks
MHs Meta-Heuristics
DRL Deep Reinforcement Learning
DL Deep Learning
LSTM Long Short-Term Memory
ML Machine Learning
LCA Laying Chicken Algorithm
TWh Terawatt-hours
BBA Big Bang Algorithm
RE Renewable Energy
MVA Multiverse Algorithm
PV Photovoltaics
VEA Volcano Eraption Algorithm
EV Electric vehicles
CVA Covid-19 Algorithm
RES Renewable energy source
EGA Evolutionary-Gradient Algorithm
RL Reinforcement learning
PSO Particle Swarm Optimization
CNN Convolution Neural Networks
ACO Ant Colony Optimization
ABC Artificial Bee Colony
FA Firefly Algorithm
LoRa Short for long-Range
US The United States of America
RISE Regulatory Indicators for Sustainable En-

ergy

Canada, and Slovak Republic. These nations have demonstrated signif-
icant progress and commitment to sustainable energy, earning them a
place at the forefront of the RISE ranking for 2021.

Electricity capacity is a fundamental concept, signifying the max-
imum potential for electrical power generation at a specific moment.
On the other hand, electricity generation refers to the actual amount of
electrical energy produced within a defined timeframe. In this section,
we provide a comprehensive analysis of countries’ performance in total
renewable energy, with a focus on the top and bottom 32 countries. We
consider both their generation and capacity statistics for the year 2021,
as illustrated in Fig. 3. The assessment scores have been computed using
a performance metric, denoted as Alpha (𝛼), calculated as follows:

𝛼 = 𝐸𝐺
𝐸𝐶

(1)

Here, EG represents the quantity of electrical energy generated in the
year 2021, and EC corresponds to the electrical energy capacity of the
respective nation at any given point in time. For example, Alpha values
for three countries are as follows:

𝐼𝑐𝑒𝑙𝑎𝑛𝑑 ∶ 𝛼 = 19617
2879

= 6.81

𝑜𝑟𝑤𝑎𝑦 ∶ 𝛼 = 156101
39406

= 3.96

𝐼𝑟𝑎𝑛 ∶ 𝛼 = 15084
11930

= 1.26

(2)

hese Alpha values offer a valuable insight into how efficiently each
f these countries utilized their renewable energy resources during
021. Iceland stands out with an Alpha value of 6.81, indicating that
t generated a substantial amount of electrical energy, exceeding the
apacity provided by its renewable energy sources. In contrast, Iran’s
lpha value of 1.26 suggests that it did not fully leverage its renewable
2

nergy potential during the same period, leaving room for improvement
n its energy generation practices. Countries must address the following
hallenges and seize opportunities to enhance their efficiency in the
uture.

.1. Background

One of the key advantages of transitioning to completely renewable
nergy is the potential to generate millions of jobs in the energy sector
y 2050. This transition not only leads to a significant increase in
ob opportunities within the energy sector but also outpaces job losses
n the fossil fuel industry. By embracing green energy sources, the
enewable energy sector is projected to create a net increase of over 11
illion jobs. This includes 19 million new jobs in renewables, energy

onservation, grid improvement, and energy flexibility. On the other
and, the fossil fuel industry is expected to experience a decline of 7.4
illion workers by 2050 [1–3]. To support this transition, education

nd training policies will play a crucial role in developing the necessary
xpertise and skills required for the renewable energy and energy-
fficient industries. These industries hold tremendous potential for
reating value and meeting the growing demand for renewable ener-
ies. By ensuring just and fair social and economic effects, resistance
o the transition can be minimized. Moreover, this transition has the
otential to transform the socioeconomic environment and bring about
ositive changes for society as a whole.

Countries around the world are beginning to recognize the immense
otential of machine learning (ML) and are actively integrating it into
heir policies to advance their energy industries. Although countries are
rying to restructure their energy strategies and rely more on cleaner
nergy sources, the intermittency of wind and solar power continues
o pose a significant challenge. The power generation of wind turbines
nd solar panels is subject to fluctuations due to external factors such as
loud cover, solar radiation, and wind speed, which are beyond human
ontrol [4–6]. This variability presents a challenge for grid operators,
ho must balance energy supply and demand to ensure a stable and

eliable energy supply. Whenever wind and solar farms generate less
lectricity, grid operators must turn to traditional power plants to
ompensate for the shortfall. Conversely, on windy and sunny days
hen renewable energy production exceeds demand, grid operators
ust reduce production from gas-fired and coal power plants to prevent

verloading the grid. These changes to the energy supply can be costly
nd result in excessive carbon dioxide emissions when excess electricity
s dissipated. Energy providers are compensated by grid operators for
ny adjustments made to their power system infrastructure, resulting in
n annual savings of around $553 million for German consumers [7].

.2. Bibliometric analysis

Accurately forecasting the health of energy distribution infrastruc-
ure is therefore a complex task that requires sophisticated techniques
uch as Deep Learning (DL) and Meta-heuristic algorithms which is

class of optimization algorithms to solve complex energy-related
roblems. DL has the potential to transform the energy sector by
mproving renewable energy distribution, forecasting, and the imple-
entation of smart grids. Meta-heuristics are promising tool to optimize

nergy generation and distribution, reduce energy consumption, and
mprove the efficiency of energy systems. Although the combination
f DL with meta-heuristic algorithms is still in its early stages of
eployment, it has the potential to fundamentally transform the way
e interact with energy resources [8–10]. Deep learning and meta-
euristic algorithms have exhibited substantial potential in tackling
iverse energy-related challenges, owing to their capacity to discern
ntricate patterns, derive meaningful abstractions, and offer precise
rognostications through the analysis of extensive datasets. As illus-
rated in Fig. 4, these methodologies can be harnessed to provide
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Fig. 1. Continental distribution of renewable energy sources in 2021.
Source: Based on data from [1–3].
Fig. 2. Regulatory Indicators for Sustainable Energy (RISE), overall renewable energy score 2021.
Source: Based on data from [1–3].
solutions to different energy-related issues. Furthermore, Fig. 5 de-
picts the distribution of the utilization percentages of meta-heuristics
and deep learning across various domains within the realm of energy
applications.

The use of metaheuristic algorithms and deep learning for energy
problems has been on the rise, as shown in Fig. 6. This figure represents
the publication trend of papers in this field since 2018. Notably, it
reveals that more than 75% of papers were published between 2021
and 2023, indicating a growing interest and emphasis on research in ap-
plying deep learning and metaheuristic algorithms to energy problems
during this period.

During the data extraction phase, as part of the analysis of the
chosen studies, a concise summary was crafted based on the collected
data. As depicted in Fig. 7(a), the distribution of these selected studies
across various subject areas is presented, with 30% of the studies falling
3

within the domain of engineering. To be more specific, 19% of the
articles were affiliated with the field of energy, 14% with computer
science, and so forth. Fig. 7(b) illustrates the distribution of these
selected studies across different databases, revealing that 50% of the
studies originated from Springer, 35% from Science Direct, and 15%
from IEEE Xplore. Meanwhile, Fig. 7(c) showcases the distribution of
these studies across various publication types. Significantly, 84% of
the studies were disseminated through peer-reviewed journals, 11%
took the form of book chapters, and 5% were presented as conference
papers.

We undertook an extensive bibliometric analysis to explore the
research landscape within our field from 2018 to 2023. Figs. 5, 6,
7 showcase the outcomes of this analysis, which were derived using
meticulous data collection and analysis techniques. Our methodol-

ogy involved systematic keyword searches, database queries, and data
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Fig. 3. Assessing renewable electricity capacity and generation in 2021: An analysis of countries with focus on top and bottom 32 countries utilizing the alpha (𝛼 = 𝐸𝐺
𝐸𝐶

)
performance metric.
Fig. 4. Some applications of DL and MHs used during 2018–2023 for EAs.
extraction methods to ensure a thorough examination of pertinent
literature within our research domain.

These figures offer valuable insights into various aspects of re-
search trends, including the distribution of studies across subject ar-
eas, databases, and types of databases utilized. By employing robust
methodology, we aimed to capture a comprehensive overview of re-
search activities and trends within our field during the specified time-
frame.

We conducted a series of targeted keyword searches encompass-
ing terms like ‘‘renewable energy’’, ‘‘Wind’’, ‘‘Solar’’, ‘‘Photovoltaic’’,
‘‘Hydro’’, ‘‘Bioenergy’’, and ‘‘Geothermal’’. In an effort to focus our
exploration on the realm of optimization and deep learning, we sup-
plemented these keywords with additional terms, including ‘‘meta-
heuristics’’ and ‘‘deep learning’’. As illustrated in Fig. 8, this word
cloud was generated by analyzing the references employed in our
study. The word cloud visually presents the top 50 most frequently
occurring words, with the size of each word directly proportional to
its frequency of appearance. Larger words within the cloud indicate
4

a higher prevalence within the referenced material, offering an at-a-
glance insight into the prominent themes and concepts driving our
research.

1.3. Contributions of this work

The purpose of this study is to examine recent advances and fun-
damental meta-heuristic algorithms in deep learning techniques as
they apply to core energy technologies and energy distribution. This
research first identifies the challenges that meta-heuristics and DL can
address, reviews recent advances in the field, and assesses the impact
of meta-heuristics and DL on energy applications. We then analyze the
various classes of meta-heuristics in DL models that are used to tackle
complex energy problems.

The novelty of this paper lies in its comprehensive exploration
of the integration of meta-heuristic algorithms with neural networks
for energy-related applications. Firstly, this paper consolidates and
synthesizes the existing body of knowledge in the field, offering a
holistic overview of state-of-the-art techniques and innovations. By
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Fig. 5. Utilization of meta-heuristics and deep learning in diverse energy applications from 2018 to 2023.

Fig. 6. Rate of publications in different data sets in area of meta-heuristics and deep learning (2018–2023).
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Fig. 7. (a) Rate of selected studies per subject area (b) Percentage of selected studies per data base. (C) Percentage of selected studies per type data base (2018–2023).
Fig. 8. Word cloud of 50 most frequently occurring words in the field of renewable energy 2018–2023.
doing so, it provides researchers and practitioners with a valuable
resource for understanding the current landscape of meta-heuristic
algorithms applied to neural networks in the context of energy phe-
nomena. Secondly, this paper brings fresh insights by delving into
recent developments within the realm of deep learning and meta-
heuristic algorithms specifically tailored to energy applications over
the past five years. This temporal focus ensures that the readers are
6

not only equipped with a comprehensive understanding of the present
state of the field but also gain access to the latest advancements and
trends. By highlighting these recent developments, the paper fosters an
environment of continuous learning and innovation, encouraging the
exploration of novel approaches for addressing the challenges posed
by complex and non-linear energy data. Consequently, this work con-
tributes to the advancement of knowledge in the intersection of neural
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Fig. 9. Different kinds of MHs in EAs from 2018–2023.
networks, meta-heuristic algorithms, and energy modeling, offering
a valuable resource for researchers, practitioners, and policymakers
seeking to harness the power of artificial intelligence in the energy
domain.

Finally, this paper presents an innovative framework that elegantly
merges the capabilities of meta-heuristic algorithms with the vast do-
main of deep learning. This integration opens new avenues for en-
hanced problem-solving and optimization, promising to reshape the
landscape of artificial intelligence and computational science.

The main contributions of this paper are as follows:

1. The study offers a comprehensive overview of recent advance-
ments in MHs, DL, and their integration.

2. Focusing on developments from 2018 to 2023, it keeps re-
searchers informed about the latest trends in this dynamic field.

3. The research introduces a performance evaluation method using
the Alpha metric, offering a fresh perspective on the capa-
bilities and generations of countries in the context of energy
technologies.

4. The study introduces an innovative framework that harmonizes
MHs with DL for energy problems.

In this study, our scientific aim is to explore the synergistic potential
of deep learning (DL) and metaheuristic (MH) algorithms in addressing
the complexities of energy-related modeling and forecasting tasks. Our
research subject focuses on the integration of MH algorithms within
DL frameworks for energy applications, aiming to enhance predictive
accuracy and optimization efficiency. This study extends the existing
research in the field by providing a comprehensive overview of recent
advancements in MHs, DL, and their integration, covering trends from
2018 to 2023. Additionally, we introduce the Alpha metric as a novel
method for performance evaluation in energy-related tasks, offering a
fresh perspective on the capabilities and generations of countries in the
context of energy technologies. Furthermore, we propose an innovative
framework that seamlessly harmonizes MHs with DL, offering potential
solutions to energy-related problems. Through these contributions, our
work aims to advance the understanding and application of MHDL
methodologies in the energy domain, paving the way for more efficient
and effective energy management strategies.
7

Briefly, this article brings a new look to the existing literature in
the following areas: (I) Recent advancements in MHs, DL, and their
integration (II) The latest trends in this dynamic field, (III) Technology
and (IV) Innovative framework that harmonizes MHs with DL for
energy problems.

This study is structured around a comprehensive framework consist-
ing MHs for EAs in Section 2. Then, Section 3 follows the core concept
of energy technologies using DL. The use of MHs in DL for energy
distribution utilities is elaborated in Section 4, Section 5 highlights
challenges of MHs for EAs. Section 5.1 describes the analysis of the
existing challenges of DL for EAs. Opportunities towards combined
meta-heuristics and DL in the context of energy distribution systems
is proposed in Section 6. Finally, Section 7 concluded the conducted
study.

2. Meta-heuristics for energy applications

Meta-heuristics refer to a broad category of optimization meth-
ods aimed at finding optimal or near-optimal solutions for complex
problems. They are versatile algorithms that efficiently explore solu-
tion spaces, often used when exact methods are impractical due to
computational complexity [11]. This section focuses on the subject of
Meta-heuristics (MH) techniques, which have garnered significant at-
tention due to their remarkable effectiveness in solving a wide range of
complex optimization problems. There are some classical optimization
algorithms for energy applications, e.g. an efficient optimization tech-
nique was proposed a case study for small hydropower plant resource
planning and development in [12]. Also [13] analyzes the operational
and investment aspects of enhancing flexibility in power systems, fo-
cusing on fossil fuel generation, storage, and demand response. It
discusses the role of power system flexibility in generation and plan-
ning, emphasizing simplified optimization methods and load profile
effects. The authors implement an optimization model using MATLAB.
Unlike traditional methods, MH techniques are gradient-free and have
demonstrated superior performance in various applications [11]. They
are also known for being easy to implement and often outpace classical
optimization methods in terms of speed [14–16].

Furthermore, there are numerous metaheuristic algorithms that can
be combined with deep neural networks to enhance their performance.
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Remarkable examples of recent and efficient metaheuristic algorithms
include Laying Chicken Algorithm (LCA) [17], Big Bang Algorithm
(BBA) [18], Multiverse Algorithm (MVA) [19], Volcano Eraption al-
gorithm (VEA) [20], Covid-19 Algorithm (CVA) [21], Evolutionary-
Gradient Algorithm (EGA) [22], Particle Swarm Optimization (PSO)
[23,24], Ant Colony Optimization (ACO) [25], Artificial Bee Colony
(ABC) [26], Differential Evolution (DE) [27], Firefly Algorithm (FA)
[28]. These algorithms encompass a diverse set of optimization tech-
niques that can be used to optimize various aspects of deep neu-
ral networks. For instance, they can facilitate tasks such as weight
initialization, hyperparameter tuning, architecture search, and many
others, thereby contributing to the overall enhancement of deep neural
network performance.

It is fascinating to witness the amalgamation of metaheuristic algo-
rithms and deep neural networks, as it presents ample opportunities
for achieving state-of-the-art results and pushing the boundaries of
machine learning innovation.

Table 1 offers an extensive overview of research efforts within the
field of meta-heuristics applied to energy-related scenarios, encom-
passing recent years. This table stands as an invaluable repository,
facilitating a deeper understanding of the most recent advancements
and developments within this dynamic field during this specific time
frame. It features four informative columns. The first column, titled
‘Meta-Heuristic Name’, identifies the specific meta-heuristic techniques
employed in each research paper. The second column, ‘Energy Appli-
cation Area’, specifies the domain within energy applications that is
addressed in each paper. The third column provides a concise summary
of the research, offering a brief yet insightful description. Lastly, the
fourth column, ‘Year of Publication’, presents the publication year of
each referenced work. This comprehensive table acts as a focal point for
researchers, practitioners, and enthusiasts, enabling them to navigate
and access key insights, methodologies, and contributions that have
shaped this exciting field during the specified timeframe.

Metaheuristic (MH) techniques are categorized into distinct classes,
each drawing inspiration from diverse sources. These categories encom-
pass evolutionary algorithms, swarm-based algorithms, nature-based
strategies, physics-based algorithms, bio-inspired approaches, and an
array of other innovative metaheuristics. Fig. 9 serves as an illus-
trative representation, showcasing the spectrum of proposed meta-
heuristics for energy applications spanning the years 2018 to 2022.
This visual depiction provides a valuable snapshot of the diverse and
evolving landscape of MH techniques tailored to address energy-related
challenges during this specific period.

Recent meta-heuristic algorithms have been proposed to address a
wide range of complex problems, such as IoT, image segmentation,
the traveling salesman problem, multi-objective problems, and data
clustering [29–35].

3. Deep learning for energy problems

3.1. Introduction to deep learning

Machine learning is a subset of artificial intelligence focused on de-
veloping algorithms that enable computers to learn patterns from data
and make decisions or predictions without explicit programming. It
encompasses various techniques such as supervised learning, unsuper-
vised learning, and reinforcement learning, with applications spanning
from image recognition to natural language processing. Deep learning
refers to a type of machine learning that uses neural networks with
multiple layers to learn from data. It is particularly effective for tasks
like image recognition and natural language processing [36].

In the late 1980s, two significant breakthroughs reshaped the field
of neural networks, setting the stage for the development of modern
deep learning techniques. In 1986, Rumelhart, Hinton, and Williams
introduced Recurrent Neural Networks (RNNs) [36]. RNNs, designed
with feedback connections, possess the ability to process sequential
8

data by retaining essential information in a hidden state. These net-
works employ the backpropagation algorithm to update their weights
and learn representations from sequential data. Given their versatil-
ity, RNNs have found widespread use in applications such as natural
language processing, speech recognition, and time series analysis [37].

In 1989, Yann LeCun and collaborators introduced Convolutional
Neural Networks (CNNs) [38]. CNNs leverage the power of convolution
to effectively handle grid-like data, including images. By utilizing fil-
ters, CNNs can extract pertinent features from input data, adapting their
weights through backpropagation to enhance recognition performance.
The impact of CNNs is particularly evident in their foundational role
in image recognition and broad application in various computer vision
tasks [39].

Another noteworthy advancement came in 1997 when Hochreiter
and Schmidhuber introduced Long Short-Term Memory (LSTM) net-
works [40]. While RNNs excel at processing sequential data, they
encounter challenges in capturing errors occurring over extended time
intervals. LSTM networks address this limitation with memory cells and
gating mechanisms, enabling them to retain context over prolonged
time spans and identify inconsistencies within the data [41].

Over several decades, continuous advancements and refinements
have been made in different types of deep learning approaches to sim-
plify and enhance the resolution of complex problems. The introduction
of LSTM networks exemplified the journey towards tackling challenges
associated with error identification in long-term dependencies. These
developments have significantly influenced the growth and application
of deep learning methodologies across various domains.

Deep Reinforcement Learning (DRL) has emerged as a powerful
combination of deep learning and reinforcement learning techniques.
The integration of deep learning into reinforcement learning has gained
substantial attention and made significant advancements in recent
years. A notable milestone in this field was reached in 2013 with
the introduction of the DQN algorithm by Volodymyr Mnih and col-
leagues [75]. This algorithm utilized deep neural networks to approx-
imate Q-values within a reinforcement learning framework, demon-
strating the potential of merging these approaches to tackle complex
problems. Since then, numerous researchers and organizations have
actively contributed to the advancement of Deep Reinforcement Learn-
ing, exploring various algorithms and applications, thereby driving
innovation within the field [76].

In 2017, the Transformer architecture, introduced by Ashish
Vaswani and the Google Research team, revolutionized sequence mod-
eling [77]. Transformers excel in parallelizing computation, resulting
in faster training times. Leveraging self-attention mechanisms, Trans-
formers can handle variable-length input sequences without the need
for padding. They have seen widespread adoption in natural lan-
guage processing (NLP) tasks, outperforming RNN and LSTM-based
models in applications like machine translation and language under-
standing. The success of Transformers has sparked the development
of new architectures and advanced sequence modeling within Deep
Learning [78].

Various common deep learning architectures are illustrated in
Fig. 2, including Convolutional Neural Networks (CNNs), Recurrent
Neural Networks (RNNs), Long Short-Term Memory (LSTM), Deep Re-
inforcement Learning, Generative Adversarial Networks (GANs), Deep
Belief Networks (DBNs), Autoencoders, Capsule Networks, Attention
Mechanisms, and Transformers. Each architecture plays a specific role
and influences the functionality of neural networks. Deep learning
techniques have been continually refined and customized to suit spe-
cific applications. Recent advancements in deep learning have seen
significant improvements achieved through experiments with various
metaheuristic algorithms. For example, CNNs and RNNs have yielded
superior accuracy and precision results, surpassing the performance of
metaheuristics such as GA and PSO on different datasets. These ongoing
improvements and explorations underscore the dynamic nature of deep

learning algorithms and their pursuit of optimized outcomes.
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Table 1
Meta-Heuristic (MH) algorithms for energy applications.

MH name Energy Application Area Description Year

Improved butterfly
optimization [42]

Smart buildings - Energy
management strategy

This investigation introduces an enhanced iteration of the Butterfly
Optimization Algorithm, tailored for optimizing the performance of
a versatile energy system that combines cooling, heating, and power
generation. This complex system comprises various key components,
including a heat recovery system, a 5 kW proton exchange
membrane stack, a compact absorption chiller, a humidifier, and a
gas compressor. The algorithm leverages a comprehensive
multi-criteria assessment approach, enabling the simultaneous
attainment of an ideal design tailored for residential usage

2020

Ameliorative whale
optimization algorithm
(AWOA) [43]

Smart electric power and
energy systems - Energy
management strategy

In a quest to reduce energy consumption and emissions while
enhancing the energy efficiency of hybrid electric ships, an
enhanced iteration of the Whale Optimization Algorithm (AWOA)
has been introduced. This AWOA algorithm plays a pivotal role in
fine-tuning the fuzzy rules that govern the ship’s hybrid power
system, consisting of components such as a fuel cell, an
accumulator battery, and a super-capacitor

2021

Multi-feature fusion-based
algorithm [44]

Smart grid - Energy
management strategy

An advanced method was proposed for improving the accuracy of
mechanical fault identification in on-load tap changers within smart
grids with electric vehicles (EVs). This technique combines
multi-feature fusion, K-nearest neighbors (KNN), and an enhanced
whale optimization algorithm. It assembles a high-dimensional
feature set with time-domain, frequency-domain, energy, and
composite multi-scale permutation entropy characteristics

2020

Nelder–Mead slime mould
algorithm [45]

Solar power and photovoltaic
models - Optimal sizing

To enhance the precision and efficiency of solar cell parameter
estimation, the Improved Slime Mould Algorithm (ISMA) is
introduced in this study. This approach synergizes the Nelder–Mead
simplex (NMs) method with a random learning mechanism,
optimizing the parameter estimation process to deliver more precise
outcomes.

2021

Parallel slime mould algorithm
(PSMA) [46]

Distribution network -
Demand side management

This study offers a novel approach to tackle the distribution
network reconfiguration (DNR) problem in the context of
distributed generation (DG). A parallel slime mould algorithm
(PSMA) as a solution is proposed, considering a range of DG types.
The approach addresses the DNR problem by integrating four
optimization objectives, encompassing active power loss, voltage
stability index, load balance degree, and switching operation times

2022

Improved butterfly algorithm
[47]

Smart grid - Smart buildings An innovative and improved iteration of the butterfly algorithm is
presented, designed to enhance home energy management systems
in the realm of the Internet of Things (IoT). This approach embraces
a multi-objective optimization strategy, with a primary focus on
two key objectives: the reduction of energy consumption costs and
the enhancement of user satisfaction. Our method is custom-tailored
for seamless integration within the smart grid framework

2021

Multi-Objective Grasshopper
Optimization Algorithm
(MOGOA) [48]

Energy trading - Energy
market trading

This paper introduces an approach called the Multi-Objective
Grasshopper Optimization Algorithm (MOGOA) combined with the
Deep Extreme Learning Machine (DELM) for short-term load
prediction in Peer-to-Peer Energy Trading (ET) within Smart Grids
(SGs). The proposed MOGOA-DELM model consists of four essential
stages: data cleaning, Feature Selection (FS), prediction, and
parameter optimization. By integrating these components, the model
aims to enhance the accuracy and efficiency of short-term load
prediction in P2P ET within SGs.

2022

Exponentially-Ant Lion Whale
Optimization (E-ALWO)
algorithm [49]

Yield optimization and energy
efficiency - Optimal sizing

In pursuit of energy-efficient and trust-centric data packet routing,
this research introduces an innovative routing model that harnesses
the power of the Exponentially-Ant Lion Whale Optimization
(E-ALWO) algorithm. The E-ALWO algorithm is a result of
combining the Exponentially Weighted Moving Average (EWMA)
principle with the Ant Lion Optimization (ALO) and Whale
Optimization Algorithm (WOA). Through this amalgamation, the
proposed model strives to optimize routing choices, thereby
improving energy efficiency and maintaining trust in the reliable
delivery of packets.

2021

Marine predators algorithm
[50]

Wind, photovoltaic and solar
thermal

In this paper, a comprehensive modern power grid paradigm is
proposed to study the Load Frequency Control (LFC) issue. The
study considers three types of renewable energy sources (RESs),
namely wind, photovoltaic, and solar thermal. Additionally, the
system paradigm integrates two types of energy storage units:
superconducting magnetic energy storage and battery energy
storage. The proposed approach aims to analyze and tackle the LFC
issue in modern power grids more effectively.

2021

(continued on next page)
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Table 1 (continued).
MH name Energy Application Area Description Year

Monarch butterfly
optimization [51]

Distribution network - Optimal
control strategy

This paper puts forward a formulation for addressing a
multi-objective challenge associated with the integration of
Distributed Energy Resources (DERs). The objective is to optimize
the choice of suitable locations, capacities, and the balance between
dispatchable and non-dispatchable DERs, all while accommodating
multiple performance objectives. To efficiently tackle this complex
decision-making problem, a hybrid method is introduced, which
merges the monarch butterfly optimization algorithm with the
Technique for Order of Preference by Similarity to Ideal Solution
(TOPSIS)

2020

Enhanced emperor penguin
optimization algorithm [52]

Renewable energy sources -
Energy management strategy

This paper introduces an enhanced version of the Emperor Penguin
Optimization (EPO) algorithm for Dynamic Economic Dispatch
(DED) in the presence of renewable energy sources and microgrids.
The DED problem focuses on optimizing power allocation from
committed generators to match variable load demands. By
incorporating renewables and microgrids, the improved EPO
algorithm aims to provide more accurate and efficient solutions for
dynamic economic load dispatch, facilitating renewable energy
integration into the grid.

2021

Chaos-opposition-enhanced
slime mould algorithm [53]

Wind turbines - Optimal sizing A Chaos-Opposition-Enhanced Slime Mould Algorithm (CO-SMA) for
minimizing the cost of energy (COE) in wind turbines is proposed
in this study. The COE model is established by considering the
optimal design parameters such as rotor radius, rated power, and
hub height. To address the limitations of classical SMA when
dealing with nonlinear tasks, an improved variant named CO-SMA
is proposed. CO-SMA leverages a chaotic search strategy (CSS) and
crossover-opposition strategy (COS) to enhance its performance in
optimizing wind turbine designs and minimizing COE.

2022

Enhanced salp swarm
algorithm [54]

Wind turbines This article introduces a novel modification and application of the
Salp Swarm Algorithm (SSA) to improve the Maximum Power Point
Tracking (MPPT) and fault-ride through ability of a grid-tied
Permanent Magnet Synchronous Generator driven by a variable
speed wind turbine (PMSG-VSWT). The multi-objective function, in
the form of integral squared error, is minimized to determine the
high-dimensional parameters of the Takagi–Sugeno–Kang fuzzy logic
controllers (TSK-FLC) employed in the cascaded control of the
grid-tied PMSG-VSWT.

2019

Integrated Harris Hawk
Optimization algorithm
(IH2OA) [55]

Photovoltaic, wind turbine,
fuel cell and energy storage
system

This paper outlines a hybrid strategy to efficiently manage power
flow in a smart grid integrated with a Hybrid Renewable Energy
System (HRES). The HRES includes photovoltaic panels, wind
turbines, fuel cells, and energy storage like batteries. To optimize
power flow, the Integrated Harris Hawk Optimization algorithm
(IH2OA) is employed, which combines crossover and mutation
functions within the Harris Hawk Optimization method, improving
power flow management in the HRES-connected smart grid.

2021

Salp swarm optimization [56] Hybrid power system -
Optimal control strategy

An optimization algorithm has been proposed to determining the
optimal combination of control parameters for a voltage source
inverter, which integrates a photovoltaic (PV) power system with
an electric vehicle (EV) charging station through a shared
grid-connected AC bus. The optimization process utilizes the Salp
Swarm Algorithm to minimize fluctuations in the DC-bus voltage by
achieving a balance between active power flow and injected
harmonics into the grid.

2020

Salp swarm algorithm [57] Photovoltaic - Energy
management

To achieve maximum power exploitation in grid-connected PV
systems during fast-varying solar irradiation levels, this paper
presents a novel configuration based on a modified Salp Swarm
Algorithm. The proposed configuration employs a step-up boost
converter for each PV panel, enabling independent control based on
irradiation levels. This configuration results in multiple levels of DC
voltage, which can be converted to AC using an active neutral
point clamped (ANPC) inverter.

2020

Enhanced adaptive butterfly
optimization algorithm [58]

Photovoltaic - Optimal sizing In this study, we present an innovative iteration of the butterfly
optimization algorithm, termed the Enhanced Butterfly Optimization
Algorithm (EABOA). EABOA is designed to enhance the precision in
determining the unidentified parameters of photovoltaic (PV)
models. This improvement in EABOA involves introducing a novel
position search equation and the utilization of a good-point set.
These enhancements aim to strike a balance between exploration
and exploitation, thereby boosting the algorithm’s effectiveness in
uncovering optimal solutions.

2021

(continued on next page)
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Modified manta ray
optimization [59]

Hybrid power system - Energy
management

This paper presents an enhanced version of the Manta Ray Foraging
Algorithm for optimizing a hybrid power system comprising solar
panels, a diesel generator, and a pumped water reservoir. The
system utilizes excess solar energy to pump water into storage for
future use. When solar energy is insufficient to meet demand, the
diesel generator and pumped water reservoir supplement the power
supply.

2021

Tunicate swarm algorithm
(TSA) [60]

Photovoltaic - Optimal sizing This paper introduces the Tunicate Swarm Algorithm (TSA) based
on Maximum Power Point Tracking (MPPT) strategy to address the
Partial Shading (PS) issue. The TSA is modeled with a Search and
Skipping (SAS) scheme to minimize tracking time and search area
effectively. By implementing the SAS scheme, the algorithm can
efficiently discard voltage ranges that lack the Global Maximum
Power Point (GMPP), resulting in reduced computation time and
improved performance.

2021

Boosting slime mould
algorithm [61]

Photovoltaic - Optimal sizing An improved Slime Mould Algorithm (SMA) that incorporates both
the Nelder–Mead simplex method and chaotic maps for estimating
unknown parameters in photovoltaic models is introduced. The
inclusion of chaotic maps enhances the location update strategy,
replacing the random number component (rand), thus improving
the algorithm’s exploration patterns. Simultaneously, the
Nelder–Mead simplex method is integrated to enhance the
algorithm’s ability to focus on refining solutions, leading to more
precise parameter estimation within the photovoltaic model.

2021

Converged Barnacles Mating
Optimizer (CBMO) algorithm
[62]

Electric vehicles - Demand
side management

This paper introduces a smart strategy to tackle the cost barrier in
hybrid motors by proposing optimal sizing of the fuel cell stack and
battery. The objective is to achieve a reliable and low-cost
battery/fuel cell motor. To accomplish this, a novel metaheuristic
algorithm, the Converged Barnacles Mating Optimizer (CBMO), is
introduced to find the optimal configuration.

2020

Bonobo Optimizer (BO) [63] Renewable energy sources -
Energy management

This paper presents an enhanced approach to the Bonobo Optimizer
(BO) by incorporating a quasi-oppositional method. The focus is on
resolving the design challenge of hybrid microgrid systems, which
include a combination of renewable energy sources (RES) such as
PV panels, WT, batteries, and diesel generators. The proposed
methodology aims to optimize the design process, enabling
improved performance and efficiency of these systems.

2020

A mutated salp swarm
algorithm [64]

Distribution network - Optimal
control strategy

The objective of this paper is to enhance the operational efficiency
of distribution systems by strategically assigning shunt capacitors
(SCs) and distributed generations (DGs) like PV to efficiently
manage reactive power compensation. To achieve the optimal sizing
and placement of these devices, a robust optimization method is
required. Thus, we introduce the Mutated Salp Swarm Algorithm
(MSSA) in this research to address this intricate optimization
challenge.

2019

Modified emperor penguin
optimizer [65]

Energy storage system -
Energy management strategy

A Modified Emperor Penguin Optimizer Algorithm (MEPOA) is
proposed for the optimal allocation of Energy Storage Systems (ESS)
and Phasor Measurement Units (PMU) in power distribution
systems. The main objective of this study is to enhance voltage
stability, taking into consideration power balance and voltage limit
constraints.

2021

A hybrid squirrel search
algorithm with whale
optimization algorithm [66]

Renewable energy sources -
Energy management strategy

An approach that combines the Squirrel Search Algorithm (SSA)
with the Whale Optimization Algorithm (WOA) has been proposed
to enhance power flow management (PFM) within a microgrid
(MG) system connected to a hybrid renewable energy source
(HRES). The SSA element is responsible for regulating voltage
source inverter control signals, ensuring the balance of power
exchange between the source side and load side.

2020

Salp swarm algorithm [67] Energy management An approach using the Salp Swarm Algorithm is introduced to
tackle energy management and emission challenges involving
storage devices. To address uncertainties linked to renewable
energy sources, load requirements, and market prices, a
probabilistic method based on the (2 m + 1) point estimate
technique to resolve the energy management problem is employed.
The proposed method is versatile, capable of addressing both
deterministic and probabilistic energy management issues while
combining the multi-objective optimization problem of cost and
emissions into a single objective function focused on total cost.

2020

(continued on next page)
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Salp swarm algorithm-based
optimal control scheme [68]

Photovoltaic - Optimal sizing A salp swarm algorithm (SSA) is proposed to optimize the tuning of
PV controllers, the objective function is enhancing the low voltage
ride-through (LVRT) performance of grid-connected PV systems. The
effectiveness of the LVRT improvement is evaluated in terms of
percentage undershoots or overshoots, settling time, and
steady-state error in the voltage response. The SSA is employed to
optimize the fitness function and determine the ideal PI controller
parameters that ensure an optimized design of the controllers.

2020

Jellyfish Search Optimization
[69]

Renewable energy sources -
Energy management strategy

This paper focuses on different sources of energy: thermal power
generators, wind power generators (WPGs), and solar photovoltaic
generators (SPGs). Uncertain WPG and SPG output powers are
predicted using Weibull and lognormal probability distribution
functions (PDFs), respectively. The objective function is designed to
account for potential underestimations and overestimations in
renewable energy sources (RES) output by integrating penalties and
reserve costs. To demonstrate the viability of this approach, the
study employs a Jellyfish Search Optimizer (JS) to optimize the
modified IEEE 30-bus test system.

2021

Manta-Ray Foraging
Optimization algorithm [70]

Smart buildings - Demand side
management

In this research, the Manta-Ray Foraging Optimizer is used to
ascertain optimal values for a range of variables aimed at
enhancing envelope features and building design to reduce energy
consumption in residential structures. The parameters under
optimization encompass aspects such as window dimensions and
type, foundation, wall and roof insulation, infiltration rate, building
orientation, and thermal mass. Furthermore, the study explores
various building shapes, including rectangles, trapezoids, T-shapes,
H-shapes, crosses, L-shapes, and U-shapes.

2021

Emerging Harris Hawks
Optimization [71]

Hybrid renewable energy
system - Optimal sizing

Aiming to minimize the Annualized Cost of the System (ACS), this
paper presents a combined algorithm for load forecasting and
optimal sizing in a stand-alone photovoltaic (PV)/wind/battery
hybrid renewable energy system. A hybrid method by integrating
Support Vector Regression (SVR) with the emerging Harris Hawks
Optimization (HHO) and Particle Swarm Optimization (PSO)
techniques is proposed to predict load demand variability in remote
areas of Kano and Abuja, Nigeria.

2021

Hybrid Salp Swarm Algorithm
[72]

Hybrid renewable energy
system - Demand side
management

In the pursuit of identifying the best placements and dimensions for
distributed renewable energy resources, covering both singular and
multiple installations, a hybrid methodology has been introduced.
This approach unites the Salp Swarm Algorithm (SSA) with the
combined power loss sensitivity (CPLS) technique. The integration
of photovoltaic (PV) and wind turbines (WT) into the distribution
network is geared towards enhancing system voltage stability, loss
reduction, and boosting system capacity.

2022

Harris Hawk Optimization
Approach [73]

Smart grid - Energy
management strategy

In the context of cost-effective operations and optimization within
multi-source microgrids, a smart unit concept that leverages the
Harris Hawk Optimization (HHO) algorithm to enhance cost
efficiency has been proposed. The parameters under consideration
encompass load demands, energy pricing, and generation capacities.
The proposed method proceeds to validate the proposed unit across
a range of microgrids, each equipped with distinct energy resources,
operating in diverse scenarios is proceed.

2021

A hybrid multi-objective
approach [74]

Smart grid - Energy
management strategy

This paper introduces a hybrid multi-objective algorithm known as
the Multi-objective Spotted Hyena and Emperor Penguin Optimizer
(MOSHEPO), designed to address both convex and non-convex
economic dispatch and microgrid power dispatch problems.
MOSHEPO incorporates an array of non-linear characteristics and
operational constraints pertaining to power generators,
encompassing factors such as transmission losses, valve-point
loading, multiple fuels, and prohibited operating zones.

2020
3.2. Deep learning applications for energy systems

Numerous DL applications have emerged to optimize smart grid
operations. An innovative model that incorporates deep learning tech-
niques for short-term load forecasting within the P2P energy trad-
ing domain of the energy market has been proposed in [79]. The
proposed model leverages the oppositional coyote optimization algo-
rithm (OCOA) for efficient feature selection, blending the principles of
oppositional-based learning (OBL) with COA to enhance convergence
rate. Additionally, accurate load prediction in P2P energy trading
systems is achieved through the utilization of deep belief networks
(DBN). [80] uses training of Bayesian models, dropout neural networks
12
and stochastic variational Gaussian Process models, to emulate a chal-
lenging high-dimensional building energy performance simulation. The
developed surrogate model harnesses 35 building design parameters
as inputs to accurately estimate 12 annual building energy perfor-
mance metrics as outputs. A pioneering approach has been presented
in [81] for probabilistic day-ahead net load forecasting, leveraging
Bayesian deep learning to effectively capture uncertainties. Using com-
bining the principles of Bayesian probability theory with deep learning
techniques, the methodological framework incorporates clustering in
subprofiles and incorporates residential rooftop PV outputs as input
features to significantly enhance the accuracy of aggregated net load
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forecasting. A novel incentive-based demand response program utiliz-
ing modified deep learning and reinforcement learning methods in [82]
is proposed. The approach incorporates the use of a modified deep
learning model which leverages recurrent neural networks to accurately
forecast uncertainties including day-ahead wholesale electricity price,
photovoltaic power output, and power load. [83]proposes profound
domain of the smart grid, which stands as a vital component in the
landscape of Industry 4.0. This investigation delves into the utilization
and assessment of ML and DL models in terms of their efficiency and
efficacy in smart grid applications. Moreover, significant trends and
challenges in data analysis within the context of this new industrial
era, such as scalability, cybersecurity, and big data, are examined,
discussed, and emphasized.

Developments in DL have been unveiled for forecasting renewable
energy. [84] presents a thorough and comprehensive review of deep
learning-based renewable energy forecasting methods, aiming to assess
their effectiveness, efficiency, and potential applications. The existing
deterministic and probabilistic forecasting methods within the deep
learning framework are categorized into four distinct groups: deep
belief network, stacked auto-encoder, deep recurrent neural network,
and other approaches. The utilization of diverse Deep Learning (DL)
algorithms in the domain of solar and wind energy resources has
been proposed by [85]. A comprehensive overview of the literature,
highlighting the potential of DL techniques while assessing their per-
formance. Additionally, the study addresses significant challenges and
opportunities for future research within this domain. [86] presents
a review of deep learning-based research in solar and wind energy
forecasting, focusing on 2016 to 2020. The review extensively covers
topics such as utilized data and datasets, data pre-processing methods,
deterministic and probabilistic forecasting techniques, evaluation and
comparison methods.

DL has been proposed in modeling renewable energy resources. A
combined algorithm based on 3D-geographic information system and
deep learning integrated approach was proposed by [87] to predict
dynamic rooftop solar irradiance which the rooftop availabilities iden-
tify by a deep learning framework. [88] proposes a multi-objectives
renewable energy-generation model to generate electrical energy from
the wind. It also develops a multi-layer neural network model based
on linear combination and multi-objective functions. Both model are
evaluated to determine the best. Recurrent Neural Network (RNN),
Long Short-Term Memory (LSTM) and Gated Recurrent Units (GRU) are
proposed to solar energy in [89]. Reliable grid management and safe
operation, and also cost-effectiveness of the photovoltaic system are ad-
dressed by the proposed methods which are based on real meteorologi-
cal data series of Errachidia province, from 2016 to 2018. [90] presents
a Mixed-Integer Linear Programming (MILP) approach to optimize a
power system’s includes a wind turbine, battery, and conventional grid.
The aim is minimizing the daily operational cost and maximizing its
resilience. A combined algorithm including deep learning and statistical
models is proposed to forecast the 72 h ahead load demand and wind
power output.

Advancements in renewable energy forecasting and optimization
techniques were proposed by DL. A deep learning approach based on
Long Short-Term Memory (LSTM), an adaptive neuro-fuzzy inference
system (ANFIS) accompanied by fuzzy c-means (FCM) and ANFIS with
grid partition (GP) were proposed in [91] to forecast 1 hour-ahead elec-
trical energy producing from the solar-PV power plant. [92] presents
a novel chronological time-period clustering algorithm that effectively
identifies representative hours for each planning stage to address un-
certainties in wind power and load demand. Furthermore, a deep
learning approach is presented, utilizing bidirectional long short-term
memory networks to provide accurate forecasts of yearly peak loads.
The proposed model is then optimized using a mixed-integer linear
programming formulation, and the Benders decomposition algorithm is
employed to obtain the optimal solution. [93] offers a comprehensive
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survey of DL-based approaches for power forecasting in wind turbines,
solar panels, and electric power load. It explores the datasets used,
enabling researchers to identify appropriate datasets. Unlike previous
surveys, it reviews forecasting schemes for both production and load
sides simultaneously.

DL applications are emerging to enhance grid security and per-
formance. A novel deep learning network designed specifically for
analyzing ultra-short-term wind power data by [94]. The proposed
method effectively handles large volumes of data in the smart en-
ergy era and mitigates the impact of random environmental varia-
tions. The approach involves decomposing the original sequence into
sub-sequences using variational mode decomposition techniques. [95]
proposes scenario-based two-stage sparse cyber-attack models for the
smart grid and develops an innovative interval state estimation-based
defense mechanism. Additionally, a stacked autoencoder is designed to
extract nonlinear and nonstationary features from electric load data.
A combined algorithm includes dynamic time warping and a bespoke
gated recurrent neural network is proposed for accurate daily peak
load forecasting in [96]. For forecasting aggregated power load and
the photovoltaic (PV) power a deep neural network based on long
short-term memory units model has been proposed in [97].

Proposed advancements in DL are enhancing energy forecasting
and adaptation. A multistep wind speed prediction model that com-
bines VMD (Variational Mode Decomposition), SSA (Singular Spectrum
Analysis), LSTM (Long Short-Term Memory) network, and ELM (Ex-
treme Learning Machine) is presented in [98]. The VMD is employed
to decompose the original wind speed data into sub-layers, while
SSA is used to extract trend information. LSTM performs forecasting
for low-frequency sub-layers, and ELM handles forecasting for high-
frequency sub-layers. Three algorithms are combined to predict wind
speed in [99]. The proposed method is proposed be combination of
wavelet packet decomposition, convolutional neural network, and con-
volutional long short term memory network. [100] presents a hybrid
deep learning framework combined by convolutional neural networks
and long short term memory to forecast consumption of energy in
smart building by recording data of energy consumption at predefined
intervals. [101] explores a deep learning-based method for short-term
prediction of generated power in photovoltaic power plants. The effec-
tiveness of the proposed method, which employs the Long Short-Term
Memory (LSTM) algorithm, is evaluated and compared with the Multi-
layer Perceptron (MLP) network using performance metrics such as
MAE, MAPE, RMSE. An approach for load forecasting that continuously
learns from new data and adapts to evolving patterns is proposed
in [102]. By employing RNN to capture time dependencies and updat-
ing weights with new data, the online aspect ensures real-time learning.
Prediction of wind power using a high-frequency SCADA database with
a 1-s sampling rate is proposed by a deep learning method in [103].
The predictive model initially included eleven features, such as wind
speeds at different heights, pitch angles, nacelle orientation, yaw error,
and ambient temperature.

Advancements in DL have been propose for policy modeling. [104]
proposes peak wave energy period (TP) forecast model using lagged
inputs derived from partial auto-correlation and an extreme learning
machine. Its performance is compared to CNN, RNN, M5tree, MLR-
ECM, and MLR models. [105] develops a renewable energy-driven
forecasting model for policy, using Korea’s energy policy as a case.
Deep learning predicts demand shifts, with the gated recurrent unit
as the base model for evaluating diverse renewable scenarios based
on economic-environmental costs. A hybrid gated recurrent unit and
CNN models is proposed in [106] to forecast typhoon-induced wind
speed and wave height near port coasts. It designed two wind speed
and four wave height models based on their combined outcomes. [107]
proposes a long short-term memory to predict power generation of the
‘‘Searaser’’ wave energy converter using experimental and numerical
simulation data. It addresses the wind speed-output power correlation

lacking in previous research. A novel SD-BiGRU model that captures
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long-range dependencies and semantic data information is proposed
in [108].

Some advancements in DL proposed for load prediction. Enhancing
the GRU’s directional nature, it establishes PSR-BiGRU for optimized
subsequences using the CSO algorithm. A hybrid wind power prediction
method using cascaded deep learning on mode-decomposed subseries,
revealing implicit meteorological patterns has been presented in [109].
By employing empirical and variational mode decompositions, it en-
hances forecasting by extracting intrinsic mode functions and dissecting
irregular sub-layers. A short-term wind speed prediction model to
utilize double decomposition, error correction, and LSTM-based deep
learning on decomposed wind speed and error sub-series for capturing
memory characteristics was proposed in [110]. Using recurrent neural
networks, an energy load forecasting method based on Sequence-to-
Sequence (S2S) deep learning is proposed, adapting S2S architecture for
gated recurrent unit and long short-term memory models [111]. [112]
created and compared 12 data-driven models (7 shallow learning, 2
deep learning, and 3 heuristic methods) for building thermal load pre-
diction. Among them, XGBoost and LSTM emerged as top performers,
surpassing the best baseline model that utilizes previous day’s data.

Proposed applications and methodological considerations in renew-
able energy highlight the potential of deep learning. [113] evaluates
deep recurrent neural networks for predicting commercial building
heating demand over a week, emphasizing their role in designing ther-
mal storage tanks to meet longer-term needs and enhance distributed
generation planning. A review of recent advancements in renewable
energy using learning-based methods, particularly deep learning and
machine learning in Solar and Wind domains was proposed. It intro-
duces a novel taxonomy for evaluating method performance, highlight-
ing challenges and emphasizing efficiency, robustness, accuracy, and
generalization as key concerns [114]. Practical machine learning and
deep learning applications in energy systems emphasizing the accuracy
of DL algorithms for complex problem-solving is presented in [115].
The research highlights powerful but less explored DL algorithms such
as RNN, ANFIS, RBN, DBN, WNN, and others.

A review of deep learning applications in wind and wave en-
ergy was proposed, comparing accuracy and highlighting their po-
tential for optimization, management, forecasting, and behavior anal-
ysis [116]. A comprehensive overview of deep learning forecasting
models in wind energy, including recurrent neural networks, restricted
Boltzmann machines, convolutional neural networks, and auto-encoder
approaches was presented, while also discussing future development
directions [117]. An extensive review of deep learning for building
energy use forecasting, covering literature, techniques, trends, applica-
tions, challenges, and potential future directions was proposed [118].
[119] proposed an integrated approach utilizing lab testing, real data,
and neural networks to evaluate micro-scale photovoltaic panel perfor-
mance for specific applications in defined environments, considering
factors such as temperature, dust accumulation, and tilt angle.

Deep Learning (DL) techniques span a rich tapestry of specialized
classes, each with its unique focus, including convolutional neural
networks (CNNs) for image data, recurrent neural networks (RNNs) for
sequential data, generative adversarial networks (GANs) for data gener-
ation, and more. Fig. 10 serves as an illustrative compass, unveiling the
panorama of deep learning applications tailored explicitly for the en-
ergy sector between 2018 and 2023. This visual presentation provides
a valuable snapshot of the diverse and evolving landscape of DL tech-
niques, categorically organized to address the multifaceted challenges
inherent to energy-related domains during this specific period.

Advancements in DL have been proposed for the energy sector. The
paper in [120] proposed a systematic analysis and discussion of the
most relevant examples for the energy sector. Conducting a compre-
hensive literature review on the applications of deep learning methods
for image analysis, the study categorizes the results into macro-areas
of application and examines emerging trends within energy-related
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cases. In [121], various architectures of deep recurrent neural networks
(DRNNs) are investigated and customized specifically for predicting
medium- and long-term energy demands. The authors aim to develop
a tailored DRNN model for forecasting heating and electricity con-
sumption with a 1-h resolution. Convolutional neural networks (CNNs),
a type of deep learning technology, are employed to forecast future
power usage. The performance of the models is evaluated using metrics
such as mean absolute error, mean square error, root mean square
error, and mean constant percentage error, as outlined in [122]. These
metrics serve to rank the effectiveness of the models. The citation [123]
presents an extensive literature and bibliometric review focusing on
deep learning models specifically designed to enhance the accuracy and
effectiveness of renewable energy forecasting methods. The Ref. [124]
offers a comprehensive review of recent advancements and future
prospects in the domain of forecasting renewable energy generation
utilizing machine learning (ML) and deep learning (DL) methodologies.
Given the rising integration of renewable energy sources (RES) into the
electricity grid, precise forecasting of their generation is paramount for
optimizing grid operations and energy management.

For the latest advancements in meta-heuristics and deep learning,
we recommend exploring the following recent sources: [125–129].
These references delve into cutting-edge methodologies and innova-
tions, offering valuable insights into the current state-of-the-art in both
fields.

4. Meta-heuristics in deep learning for energy applications

Several metaheuristic algorithms have been introduced in recent
studies to enhance the performance of deep learning (DL) models for
various energy applications. The exploration of this emerging field
has been conducted with meticulous attention to detail, culminating
in a comprehensive understanding of the subject matter. The existing
body of work in this nascent domain can be succinctly summarized as
follows:

In [130], two metaheuristic algorithms were proposed for opti-
mizing DL model weights to enhance the detection and prevention
of cyberattacks. Another study, [131], introduced the Reptile Search
Algorithm (RSA) to enhance Long Short-Term Memory (LSTM) and
Bidirectional LSTM (BiLSTM) models through hyperparameter tuning.
Furthermore, [132] applied a metaheuristic algorithm as a hyperpa-
rameter optimizer to improve the performance of Deep Belief Network
(DBN) models used for converters and solar panels. In energy fore-
casting, [133] presented an enhanced Sine Cosine Algorithm (SCA)
for hyperparameter tuning in Long Short-Term Memory (LSTM) and
Gated Recurrent Unit (GRU) neural networks. A novel approach called
Deep Learning with Metaheuristics based Data Sensing and Encod-
ing (DLMB-DSE) was proposed in [134]. For estimating the state of
charge (SOC) of batteries, [135] employed a recent metaheuristic al-
gorithm to optimize deep learning parameters. Hybrid electric vehicle
energy management with minimal fuel consumption was addressed
in [136] using a combination of a new metaheuristic and deep learn-
ing. In the context of cyber threat detection in IoT-enabled Smart
Cities, [137] utilized deep learning with hyperparameters optimized via
the Multi-Versus Optimizer (MVO) algorithm. A novel metaheuristic-
based clustering method combined with an optimal Gated Recurrent
Unit (OGRU)-based network was introduced in [138] for IoT-enabled
Wireless Sensor Networks (WSN) in 5G networks. [139] introduced a
fusion of a new metaheuristic approach and deep learning for smart
grid stability prediction models.

A novel hybrid short-term electric load forecasting model has been
proposed in [140]. This model comprises three key components: data
pre-processing and feature selection (utilizing a modified mutual infor-
mation technique), training and forecasting (based on a factored con-
ditional restricted Boltzmann machine), and optimization (facilitated
by our genetic wind-driven optimization algorithm). These components
collectively enhance the model’s accuracy and performance for short-

term electric load forecasting. The inclusion of the Jellyfish Search (JS)
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Fig. 10. Different kinds of DL techniques in EA from 2018–2023.
metaheuristic to fine-tune its hyperparameters was proposed in [141],
thereby enhancing both the accuracy and stability of the model. Follow-
ing the development of the hybrid JS-CNNs model, rigorous validation
was conducted, yielding invaluable insights for shaping energy policy
within management units and facilitating optimized regional power
distribution strategies. This research substantially contributes to the
prediction of future energy consumption trends and the elucidation
of power consumption patterns in cities and counties across the na-
tion. [142] introduces a novel approach by employing optimized deep
learning neural networks for the accurate prediction of wave energy
flux and various wave-related parameters. Notably, our methodology
incorporates the innovative concept of ‘‘moth-flame optimization’’ as
a pivotal component in determining the optimal configuration of the
deep neural network architecture and the selection of pertinent input
data. Furthermore, our work extends beyond conventional techniques,
as we have enhanced the moth-flame optimization algorithm by re-
fining its search space mechanisms, thereby advancing its efficacy in
solving complex optimization challenges. An innovative forecasting
system composed of three key modules: data preprocessing, individual
forecasting, and weight optimization has been proposed in [143].
These modules work in concert to significantly enhance forecasting
accuracy. The data preprocessing module employs decomposition tech-
niques to obtain smoother sequences, while the prediction module
utilizes deep learning algorithms to extract association features. In the
weight optimization module, a unique combination strategy based on
multi-objective optimization and nonnegative constraints is applied,
greatly improving prediction accuracy, surpassing the limitations of
individual models. [144] introduces an innovative hybrid algorithm
that merges the realms of metaheuristics and machine learning to
optimize daily operating schedules within building energy systems.
Leveraging deep neural network machine learning, the proposed al-
gorithm predicts the ideal operations for integrated cooling tower
systems, while harnessing the power of metaheuristics to optimize the
functionality of the remaining components. This synergistic approach
ensures efficient and effective energy management. A mathematical
modeling of a doubly fed induction generator (DFIG) and utilizes third-
generation deep learning neural networks (DLNN) for controller design
is presented by [145]. We regulate the torque of a variable-speed
wind turbine generator using a PID controller with gains tuned by the
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DLNN model. To prepare the optimal dataset for DLNN training, we
introduce the novel density-based grey artificial bee colony (D-GABC)
algorithm. Additionally, D-GABC optimizes the neural network con-
troller weights to prevent premature convergence and reduce computa-
tional time. This integrated approach enhances controller efficiency. To
enhance climate-adaptive designs for the aerogel glazing system, a ver-
satile optimization methodology was proposed in [146]. This approach
seamlessly blends supervised machine learning with a cutting-edge
teaching–learning-based optimization algorithm to determine optimal
geometric and operating parameters. [147] proposes the Improved
Slime Mould Algorithm (ISMA) to accurately and efficiently determine
solar cell parameters. ISMA combines the Nelder–Mead simplex mech-
anism with random learning, enhancing both convergence and local
search capabilities compared to traditional SMA approaches. [148] in-
troduces an innovative approach to optimizing designs in the presence
of stochastic uncertainties. A learning-based surrogate model to analyze
and manage these uncertainties effectively is proposed. Moreover, we
define a multi-level optimization function that accounts for uncertainty
and seamlessly integrate it with a heuristic teaching–learning-based
algorithm to identify the optimal design. [149] focused on data-driven
machine learning techniques and their real-time applications in smart
energy systems. Integrating machine learning into core energy tech-
nologies and its use in energy distribution utilities addressed. This
review paper discussed identify common issues for future research
and highlight opportunities and challenges in the field of machine
learning for energy distribution. [150] proposes a hybrid CNN-LSTM-
Transformer model, complemented by clustering and feature selection
techniques, to forecast solar energy production efficiently. Using the
Fingrid open dataset, the proposed model outperformed others, in-
cluding LSTM-CNN, making it a trusted tool for seamless solar energy
integration into grids.

5. Challenges of meta-heuristics and deep learning for energy
applications

Both meta-heuristics and deep learning techniques present promis-
ing solutions for energy applications, yet they confront their own
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Fig. 11. (a) Rate of selected studies per subject area (b) Percentage of selected studies per data base (2018–2023).
unique sets of challenges. Meta-heuristics face scalability issues in deal-
ing with intricate, large-scale energy optimization problems, demand-
ing efficient adaptation to high-dimensional variables and constraints.
Additionally, ensuring convergence to global optima, managing com-
putational efficiency, fine-tuning parameters, and addressing multi-
objective optimization, robustness, real-time operation, constraint inte-
gration, and parallelization are paramount. Conversely, deep learning
contends with data availability and quality concerns, interpretability
as ‘‘black box’’ models, the need for extensive training data, com-
putational complexity, generalization issues, and the intricate task of
hybridization. Despite these challenges, both meta-heuristics and deep
learning hold immense potential to revolutionize the energy sector,
with researchers and practitioners continually striving to unlock their
transformative capabilities.

5.1. Challenges of meta-heuristics

1. Scalability: Handling large-scale energy optimization problems
is challenging due to the high dimensionality of variables and
constraints involved. Developing scalable meta-heuristics that
can efficiently explore the solution space and adapt to complex,
real-world energy systems is crucial. Techniques like paralleliza-
tion, surrogate modeling, and decomposition methods can help
tackle scalability issues.

2. Convergence: Ensuring convergence to global optima is es-
sential, especially when dealing with intricate energy systems.
Meta-heuristics can sometimes get trapped in local optima. Ad-
vanced search strategies, such as diversity preservation mech-
anisms or hybridization with local search methods, can aid in
escaping local optima and finding better solutions.

3. Computational Efficiency: Meta-heuristics can be computa-
tionally intensive, making them less suitable for real-time appli-
cations. Balancing computational efficiency with solution quality
is essential. This can be achieved through algorithmic enhance-
ments, such as adaptive parameter tuning, early termination
criteria, and population control mechanisms.

4. Parameter Tuning: Tuning the parameters of meta-heuristics
for specific energy optimization tasks is a challenging optimiza-
tion problem itself. Automated parameter tuning techniques,
like meta-heuristics for hyperparameter optimization or machine
learning-based tuning, can assist in finding optimal parameter
configurations for different scenarios.

5. Multi-Objective Optimization: Energy optimization often in-
volves conflicting objectives, such as cost minimization and en-
vironmental impact reduction. Developing multi-objective meta-
heuristics that can efficiently explore the trade-off between these
objectives is essential. Pareto-based methods and preference-
based selection mechanisms are useful for handling multiple,
competing objectives.
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6. Robustness: Energy systems are prone to uncertainties, and
meta-heuristic solutions must remain reliable under changing
conditions. Robust optimization techniques, scenario-based ap-
proaches, or robustness-enhancing meta-heuristics can be em-
ployed to ensure that solutions are resilient to variations in
factors like renewable energy generation or demand fluctua-
tions.

7. Real-Time Operation: Integrating meta-heuristics into real-time
energy management systems demands algorithms capable of
making rapid decisions in response to dynamic changes. Real-
time meta-heuristics with adaptive search strategies and efficient
data-driven decision-making processes are necessary to address
sudden changes in supply and demand.

8. Incorporating Constraints: Energy optimization often involves
various constraints, including physical, operational, and regula-
tory constraints. Effective handling of constraints within meta-
heuristic algorithms is crucial to ensure that solutions are feasi-
ble and compliant with industry standards and regulations.

9. Parallelization: Leveraging parallel computing resources can
significantly speed up meta-heuristic algorithms. Strategies like
parallel meta-heuristics, distributed computing, or GPU acceler-
ation can be employed to harness the power of multiple proces-
sors or computing nodes for tackling large-scale energy optimiza-
tion problems efficiently.

10. Hybridization: Hybridization: Combining meta-heuristics with
other optimization techniques or machine learning methods can
lead to more robust and effective solutions. Developing hy-
brid algorithms that integrate different optimization paradigms
effectively, like combining genetic algorithms with deep rein-
forcement learning or particle swarm optimization with neural
networks, can be a challenge in itself but can yield powerful
optimization tools.

5.2. Challenges of deep learning

1. Data Quality: Ensuring high-quality data involves not only ac-
curacy, consistency, and reliability but also addressing issues
like missing data, outliers, and data drift. Implementing ro-
bust data preprocessing and cleaning pipelines becomes impera-
tive, and domain-specific data quality standards are essential for
trustworthy results.

2. Interpretability: Enhancing the interpretability of deep learn-
ing models can be achieved through techniques like attention
mechanisms, model visualization, and explainable AI. Bridging
the gap between model complexity and human understanding is

an ongoing challenge, especially for critical energy decisions.
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3. Training Data Size: In scenarios with limited historical data,
techniques such as semi-supervised learning, active learning,
and synthetic data generation become indispensable to augment
training datasets and facilitate model training and adaptation.

4. Generalization: Ensuring robust model generalization involves
comprehensive data augmentation strategies, domain adaptation
techniques, and model ensembling approaches to account for the
inherent variability in energy systems.

5. Model Complexity: Managing model complexity necessitates
the use of regularization methods, model compression tech-
niques, and architecture search algorithms to strike a balance
between model performance and resource efficiency.

6. Energy Efficiency: Designing energy-efficient deep learning
models involves optimizing model architectures, quantization,
and deploying model inference on energy-efficient hardware
platforms, such as GPUs, TPUs, or specialized edge devices with
low power consumption.

7. Uncertainty Quantification: Robust uncertainty quantification
requires the incorporation of Bayesian neural networks, Monte
Carlo dropout, and ensemble methods to provide probabilistic
predictions and decision-making under uncertainty.

8. Transfer Learning: Effective transfer learning in the energy do-
main demands domain adaptation techniques, fine-tuning strate-
gies, and model architectures that facilitate knowledge transfer
from pre-trained models to specific energy tasks.

9. Real-Time Processing: Achieving real-time processing involves
model optimization for low latency, hardware acceleration, and
the development of edge AI solutions that can make rapid deci-
sions based on dynamic energy conditions.

10. Hardware Constraints: Adapting models to resource-
constrained hardware necessitates model quantization, model
pruning, and hardware-aware neural architecture search to
strike a balance between model complexity and hardware limi-
tations.

11. Privacy and Security: Safeguarding sensitive energy data re-
quires robust encryption, secure data sharing protocols, feder-
ated learning approaches, and rigorous security audits to protect
against data breaches and adversarial attacks.

12. Model Bias: Identifying and mitigating biases in deep learning
models requires fairness-aware training, debiasing techniques,
and continuous monitoring to ensure equitable predictions and
decision-making in energy applications.

13. Data Fusion: Effectively fusing heterogeneous data sources ne-
cessitates advanced data integration techniques, data quality
validation methods, and noise reduction strategies to leverage
the full potential of diverse data streams.

14. Long-Term Forecasting: Extending deep learning models for
long-term forecasting requires the incorporation of time series
analysis, trend modeling, and handling complex, multi-year de-
pendencies within energy data to provide accurate long-term
energy predictions and insights.

In Fig. 11, we present a comparative analysis of document counts
spanning the years 2018 to 2023, focusing on the domains of meta-
heuristics, deep learning, and the intersection of meta-heuristics within
the realm of deep learning for energy applications.

6. MH in DL (MHDL) opportunities towards energy applications

Meta-heuristics represent a versatile and efficient approach in the
domain of deep learning for energy applications. These optimization
algorithms serve as robust tools to tackle intricate energy-related issues,
optimizing neural network architectures, hyperparameters, and train-
ing methodologies. Their adaptability, proficiency in navigating high-
dimensional search spaces, and knack for discovering near-optimal
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solutions establish them as indispensable assets for elevating energy
efficiency and performance within deep learning applications. This
section outlines many opportunities presented by the utilization of
meta-heuristics in this context. Especially a comprehensive framework
for utilizing MHs in conjunction with DL for improved energy manage-
ment. MHDL framework comprises six interconnected steps:
Step 1: Data Acquisition

The first step focuses on collecting pertinent data from hybrid
inventories of renewable energy sources. This foundational data forms
the basis for subsequent analyses and model development, ensuring the
representation of diverse and crucial information.
Step 2: Data Preprocessing

In the second step, data undergoes meticulous preprocessing. Extra-
neous information and noise are systematically identified and removed,
resulting in a pristine dataset devoid of confounding elements.
Step 3: Data Enhancement through MHs

The third step involves harnessing the power of MHs to elevate
data quality and relevance. MHs are employed to optimize the dataset,
refining inputs for the subsequent DL phase. This step incorporates
diverse data enrichment techniques and feature engineering to unlock
latent insights within the dataset.
Step 4: DL Training Phase

The fourth step integrates the enriched dataset into the DL frame-
work. Knowledge gained from MHs is seamlessly embedded into DL
models, enabling them to make informed predictions and decisions.
This training phase prepares the model for real-world energy applica-
tions.
Step 5: Prediction and Optimization

The fifth step is dedicated to prediction and optimization. DL mod-
els, trained on enhanced data, are deployed to manage energy-related
tasks. Simultaneously, optimization techniques fine-tune various as-
pects of the energy problem, ensuring the efficient utilization of re-
sources and offering forecasting capabilities.
Step 6: Evaluation and Validation

The sixth step rigorously assesses the effectiveness of integrating
MHs with DL. Evaluation metrics and performance indicators scruti-
nize model accuracy, reliability, and overall performance in address-
ing energy-related challenges. This step serves as a crucial validation
checkpoint for the approach.

A detailed visual representation of this comprehensive workflow is
shown in Fig. 12 and the related Flowchart is shown in Fig. 13, which
provides a graphical depiction of the entire process. This systematic
framework offers a robust and versatile methodology for harnessing
the potential of Meta-Heuristics within the realm of Deep Learning for
advanced energy applications, with the promise of revolutionizing the
field of renewable energy management.

6.1. Parameter sensitivity in enhanced MHDL framwork

We consider the following key parameters and their sensitivities to
algorithm performance:
Population Size: The size of the population in meta-heuristic algo-
rithms significantly influences convergence speed and solution quality.
Larger populations may enhance exploration capabilities but incur
higher computational costs. Conversely, smaller populations may lead
to premature convergence and suboptimal solutions. We conduct sen-
sitivity analyses to determine an optimal population size that balances
computational efficiency with solution quality.
Parameterization for Data Refinement: Within the data refinement
phase of our framework, parameters related to MHs play a crucial role
in optimizing data quality and relevance. Sensitivity analyses are con-
ducted to evaluate parameters such as refinement techniques, feature
selection criteria, and optimization strategies, aiming to enhance the
efficacy of data preprocessing and enrichment processes.
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Fig. 12. The process of MHs in DL for energy applications.
Fig. 13. Flowchart illustrating the proposed coupling framework.
Training Phase Optimization: Parameters during the optimization
phase of deep learning models are pivotal in shaping model perfor-
mance and generalization capabilities. Sensitivity analyses are con-
ducted to assess parameters such as learning rate, batch size, regular-
ization techniques, and network architecture, ensuring robust training
and adaptation to diverse energy datasets.
Model Deployment and Fine-Tuning: In the deployment and fine-
tuning phase, parameters governing model deployment and optimiza-
titon strategies are critical for achieving accurate predictions and ef-
ficient resource utilization. Sensitivity analyses are performed to eval-
uate parameters such as forecasting horizon, optimization objectives,
and model evaluation metrics, guiding decision-making processes in
energy management tasks.
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Convergence Criteria: Convergence criteria define the conditions un-
der which the algorithm halts, signaling convergence or reaching a
predefined stopping criterion. Sensitivity analyses are conducted to
evaluate the impact of different convergence criteria on algorithm
performance, considering factors such as convergence speed, solution
quality, and computational resources.

6.2. Computational complexity and practical applicability

The MHDL framework involves several computational steps, includ-
ing data acquisition, preprocessing, data enhancement through MHs,
DL training phase, prediction and optimization, and evaluation and
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validation. Each of these steps may incur computational overhead,
particularly when dealing with large datasets and complex optimization
problems. The integration of MHs with DL introduces additional com-
putational requirements, such as parameter tuning and optimization
convergence.

The computational complexity of the MHDL framework can vary
depending on factors such as dataset size, model architecture, opti-
mization algorithms used, and specific energy-related tasks addressed.
Assessing the computational complexity involves analyzing factors like
algorithm runtime, memory consumption, and scalability to handle
increasing data volumes.

While addressing energy-related challenges, the practical applica-
bility of the MHDL framework in path planning applications is crucial.
Path planning often involves optimizing routes for energy-efficient nav-
igation, resource allocation, or infrastructure deployment. The MHDL
framework offers several advantages in this context:
Data-Driven Decision Making: By leveraging data acquisition and pre-
processing steps, the MHDL framework enables data-driven decision-
making in path planning applications. It utilizes historical data and
real-time inputs to optimize path trajectories based on energy con-
straints and objectives.
Optimization and Prediction: Through the DL training phase and
rediction and optimization steps, the MHDL framework enhances
ath planning by predicting energy consumption patterns, optimiz-
ng route selections, and refining navigation strategies. This facili-
ates more efficient resource utilization and improved performance in
nergy-constrained environments.
valuation and Validation: The evaluation and validation step en-

sures the robustness and reliability of path planning solutions gener-
ated by the MHDL framework. Performance metrics assess factors like
energy efficiency, route accuracy, and computational efficiency, provid-
ing insights into the practical effectiveness of the proposed methods.

Some potential limitations of the proposed method in other real
applications could include:
Scalability: The proposed method may face challenges when scaling to
larger datasets or more complex systems outside of the energy domain.
Generalization: The effectiveness of the integrated framework may
vary across different application domains due to differences in data
characteristics and problem complexities.
Computational Resources: The computational requirements of the
proposed method could be prohibitive for applications with resource
constraints.
Domain-specific Challenges: Other real-world applications may pose
unique challenges that the proposed method may not address effec-
tively.

7. Conclusion and future work

In conclusion, this paper has provided an extensive and up-to-date
examination of meta-heuristic algorithms and deep learning techniques
in the context of energy applications spanning the years 2018 to
2023. While there exists a substantial body of work dedicated to both
meta-heuristic algorithms (MHs) and deep learning (DL) techniques
for energy-related problems, there is a noticeable gap in the literature
when it comes to the integration of these two domains, particularly in
the context of solving complex issues in renewable energy management.

Our study has not only shed light on the current challenges and
limitations faced by MHs and DL in renewable energy management but
has also introduced a novel framework that seeks to bridge these gaps.
This innovative framework offers a promising avenue for addressing
and optimizing renewable energy management problems in an efficient
and effective manner. By harnessing the strengths of both MHs and DL,
it presents a synergistic approach that can unlock new opportunities for
advancing the field of sustainable energy management.

As we move forward into the future, the integration of MHs and
DL is poised to play a pivotal role in addressing the pressing chal-
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lenges associated with renewable energy generation, distribution, and
utilization. The insights and methodologies presented in this paper pave
the way for further research and development in this exciting and
transformative field. By collaborating across disciplines and exploring
the uncharted territories at the intersection of MHs and DL, we can
unlock the full potential of renewable energy sources and contribute to
a more sustainable and eco-friendly energy landscape. This paper marks
a significant step towards realizing that vision, and we look forward
to the exciting advancements that will undoubtedly emerge from this
burgeoning field of study.

The paper contributes significantly in these areas:

(1) Providing a comprehensive overview of recent advancements in
MHs, DL, and their integration.

(2) Offering detailed coverage of trends from 2018 to 2023.
(3) Introducing the Alpha metric for performance evaluation.
(4) Proposing an innovative framework that harmonizes MHs with

DL for energy problems.

he integration of MHs and DL in energy applications offers a host
f compelling benefits and promising opportunities for future works,
ncluding:

1. Improved Optimization: Meta-heuristics serve as powerful op-
timization tools when combined with deep learning in energy
systems. They facilitate the discovery of optimal configurations
and settings, enabling energy systems to operate at their peak
efficiency. By fine-tuning parameters and exploring a vast so-
lution space, meta-heuristics help uncover cost-saving oppor-
tunities and enhance overall system performance. This benefit
is particularly valuable in scenarios where energy system opti-
mization involves intricate variables and complex relationships,
ultimately leading to significant cost reductions and operational
improvements.

2. Enhanced Efficiency: The synergy between meta-heuristics and
deep learning is instrumental in driving operational efficiency in
energy management. Through continuous monitoring and real-
time adjustment of energy usage and resource allocation, these
techniques minimize wastage and maximize the productive use
of resources. This heightened efficiency not only translates into
cost savings but also plays a pivotal role in promoting sustain-
able energy practices. By optimizing energy utilization, systems
become more environmentally friendly and economically viable
in the long run.

3. Cost Reduction: Cost reduction is a central objective in effective
energy management, and the integration of meta-heuristics with
deep learning is a formidable strategy to achieve this goal.
Predictive maintenance models, empowered by these techniques,
anticipate equipment failures and strategically schedule main-
tenance activities, reducing the financial impact of unexpected
breakdowns. Additionally, by optimizing resource allocation and
operational processes, operational and maintenance costs can
be substantially trimmed, bolstering overall cost-effectiveness in
energy management strategies.

4. Resource Allocation: Optimal resource allocation is pivotal
for achieving the highest efficiency and effectiveness in en-
ergy systems. Meta-heuristics embedded within deep learning
frameworks excel in precisely this task. They ensure that critical
resources, such as electricity, fuel, and manpower, are deployed
where they can have the most significant impact. For instance, in
the context of a power grid, these techniques help balance load
distribution, preventing overloads and minimizing energy losses.
In energy-intensive industries, this precise resource allocation
can lead to substantial improvements in production efficiency
and energy consumption.

5. Grid Stability: Grid stability is a fundamental prerequisite for
an uninterrupted energy supply, particularly in today’s context

with the increasing integration of renewable energy sources.
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The amalgamation of meta-heuristics and deep learning equips
energy grids with the capability to respond in real-time to dy-
namic conditions. This ensures the grid’s stability by mitigating
potential issues, such as voltage fluctuations or line failures,
before they can escalate into grid-wide failures. The outcome is
a more reliable and resilient energy supply, essential for both
consumer satisfaction and the seamless integration of renewable
energy sources into the grid.

6. Environmental Impact: The implementation of meta-heuristics
in deep learning for energy applications plays a pivotal role in
mitigating the adverse environmental consequences of energy
production and consumption. By optimizing energy usage pat-
terns, these techniques contribute to a substantial reduction in
greenhouse gas emissions and minimize the overall environmen-
tal footprint. This alignment with sustainability and environmen-
tal goals underscores the potential of meta-heuristics to foster a
cleaner and greener energy ecosystem.

7. Renewable Integration: Meta-heuristics serve as a linchpin in
the effective integration of renewable energy sources, such as
solar and wind, into the energy landscape. Through their op-
timization capabilities, meta-heuristics enhance the generation
and storage of renewable energy, reducing reliance on fossil
fuels. This transition towards cleaner energy sources not only
promotes environmental sustainability but also bolsters energy
security by diversifying the energy mix.

8. Real-Time Decision-Making: The synergy between meta-
heuristics and deep learning empowers real-time, data-driven
decision-making in the face of ever-changing energy condi-
tions. This dynamic responsiveness significantly improves the
resilience of energy grids by enabling swift adjustments and
adaptations. As a result, disruptions are minimized, and the grid
can better accommodate fluctuations in supply and demand,
enhancing overall grid stability.

9. Optimal Load Balancing: Efficient load distribution across the
energy grid is a cornerstone of reliable energy delivery. Meta-
heuristics excel in this domain by optimizing load balancing
strategies. This optimization minimizes congestion, prevents
overloads that can lead to outages, and ensures that energy
resources are allocated effectively and sustainably. The result is
a more resilient and robust energy infrastructure.

10. Resource Management: Effective management of energy re-
sources, including batteries and storage systems, is essential
for the long-term sustainability of the energy network. Meta-
heuristics optimize the deployment and utilization of these re-
sources, prolonging their lifespan and maximizing their con-
tribution to grid stability. This careful resource management
not only improves energy network efficiency but also extends
the overall lifecycle of expensive infrastructure, making it a
financially sound choice for energy providers and consumers
alike.

11. Predictive Maintenance: Predictive maintenance utilizes ad-
vanced technologies like deep learning and meta-heuristics to
monitor the condition of equipment in real-time. By analyzing
data from sensors and historical maintenance records, it predicts
when a piece of equipment is likely to fail. This proactive
approach allows organizations to schedule maintenance before
a breakdown occurs, minimizing downtime and avoiding costly
repairs. It is a cost-effective strategy that ensures equipment
reliability and operational efficiency.

12. Energy Market Optimization: Energy market optimization in-
volves using sophisticated algorithms and data analysis tech-
niques to make strategic decisions in the energy trading and
pricing sectors. By optimizing energy trading strategies, it is
possible to create a more equitable marketplace that benefits
both energy consumers and suppliers. Fairer market conditions
encourage competition and innovation while ensuring efficient
use of energy resources, ultimately leading to better energy
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affordability and availability.
13. Resilience: Energy systems need to be resilient to withstand var-
ious challenges, such as extreme weather events or cyberattacks.
The integration of meta-heuristics into deep learning models
enhances the resilience of these systems. They can quickly adapt
to changing conditions, making them more capable of with-
standing disruptions and recovering rapidly from adverse events.
This resilience is critical for maintaining a stable energy supply,
especially in times of crisis.

14. Energy Conservation: Energy conservation is achieved by pro-
viding consumers with insights into their energy consumption
patterns through data analysis and feedback mechanisms. By
understanding their energy usage habits, consumers can adopt
more energy-efficient practices, reduce energy wastage, and
lower their utility bills. This benefits not only individual con-
sumers but also contributes to the overall reduction of energy
consumption, which is vital for environmental sustainability.

15. Sustainability: Sustainability in the energy sector involves op-
timizing the use of renewable energy sources like solar and
wind while reducing reliance on non-renewable resources like
fossil fuels. Deep learning and meta-heuristics play a crucial role
in modeling and optimizing renewable energy generation. By
aligning energy practices with global sustainability goals, we
can reduce carbon emissions and mitigate the impact of climate
change.

16. Load Forecasting: Accurate load forecasting is essential for
energy planning and resource allocation. Deep learning and
meta-heuristics help in analyzing historical data and predicting
future energy demand. This ensures that energy providers can
allocate resources efficiently, preventing shortages or surpluses.
It also aids in long-term infrastructure planning to meet the
growing energy needs of a region.

17. Grid Integration: Smart grid technologies combined with meta-
heuristics enable better integration and coordination of diverse
energy resources. This results in a more efficient distribution of
energy across the grid, reducing transmission losses and improv-
ing overall energy reliability. It also supports the integration of
intermittent renewable energy sources, such as solar and wind,
into the grid.

18. Distributed Energy: Effective management of distributed en-
ergy resources, like residential solar panels and wind turbines,
involves optimizing their operation to contribute to grid stabil-
ity. By coordinating these resources efficiently, we can maxi-
mize their energy output and minimize fluctuations, ensuring a
reliable and resilient energy supply.

19. Consumer Empowerment: Real-time information and control
over energy consumption empower consumers to make informed
decisions about how they use energy. This can include adjust-
ing usage patterns during peak demand periods or investing
in energy-efficient appliances. Empowered consumers have the
potential to achieve cost savings and reduce their environmental
footprint, contributing to a more sustainable energy future.

20. Regulatory Compliance: Energy providers can leverage meta-
heuristics and deep learning to ensure compliance with regu-
lations and standards. These technologies help in monitoring
and optimizing energy operations, ensuring safety, legality, and
reliability. Compliance not only avoids legal issues but also
builds trust among consumers and regulators, fostering a stable
energy market.
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