Correlation

Dr. Hawkar Qasim Birdawod

Defining Correlation

- Co-variation or co-relation between two variables
- These variables change together
- Usually scale (interval or ratio) variables

Correlation Coefficient

- A statistic that quantifies a relation between two variables
- Can be either positive or negative
- Falls between -1.00 and 1.00
- The value of the number (not the sign) indicates the strength of the relation

Slide from: Statistics for Managers Using Microsoft® Excel 4th Edition, 2004 Prentice-Hall

Correlation

Positive Correlation

Association between variables such that high scores on one variable tend to have high scores on the other variable

Negative Correlation

Association between variables such that high scores on one variable tend to have low scores on the other variable

A Perfect Positive Correlation

A Perfect Negative Correlation

A slope of 2 means that every 1-unit change in X yields a 2-unit change in Y.

Simple linear regression

Love of Math vs Math SAT score

The linear regression model: intercept Love of Math = 5 + .01*math SAT score slope

Misleading Correlations

- Something to think about
 - There is a 0.91 correlation between ice cream consumption and drowning deaths.
 - Does eating ice cream cause drowning?
 - Does grief cause us to eat more ice cream?

Correlation

Correlation is NOT causation

-e.g., armspan and height

The Pearson Correlation Coefficient

- A statistic that quantifies a linear relation between two scale variables.
- Symbolized by the italic letter *r* when it is a statistic based on sample data.
- Symbolized by the italic letter *p* "rho" when it is a population parameter.

- Pearson correlation coefficient
 - -r Linear relationship $r = \frac{\sum [(X M_X)(Y M_Y)]}{\sqrt{(SS_X)(SS_Y)}}$

Correlation Hypothesis Testing • Step 1. Identify the population, distribution, and assumptions

- Step 2. State the null and research hypotheses.
- Step 3. Determine the characteristics of the comparison distribution.
- Step 4. Determine the critical values.
- Stop 5 Colorlate the test statistic

TABLE 15-2. Is Skipping Class Related to Statistics Exam Grades?

Here are the scores for 10 students on two scale variables: number of absences from class in one semester and exam grade.

Student	Absences	Exam Grade
1	4	82
2	2	98
3	2	76
4	3	68
5	1	84
6	0	99
7	4	67
8	8	58
9	7	50
10	3	78

Always Start with a Scatterplot

TABLE 15-3. Calculating the Numerator of the Correlation Coefficient								
Absences (X)	$(X - M_X)$	Exam Grade (Y)	$(Y - M_Y)$	$(X - M_{\chi})(Y - M_{\gamma})$				
4	0.6	82	6	3.6				
2	-1.4	98 22		-30.8				
2	-1.4	76	0	0.0				
3	-0.4	68	-8	3.2				
1	-2.4	84	8	-19.2				
0	-3.4	99	23	-78.2				
4	0.6	67	-9	-5.4				
8	4.6	58 -18		-82.8				
7	3.6	50 -26		-93.6				
3	-0.4	78	2 -0.8					
$M_{\chi} = 3.400$		$M_{Y} = 76.000$	$\Sigma[(X -$	$(M_{\chi})(Y - M_{\gamma})] = -304.0$				

TABLE 15-4. Calculating the Denominator of the Correlation Coefficient								
Absences (X)	$(X - M_X)$	$(X - M_{\chi})^2$	Exam Grade (Y)	$(Y - M_Y)$	$(Y - M_Y)^2$			
4	0.6	0.36	82	6	36			
2	-1.4	1.96	98	22	484			
2	-1.4	1.96	76	0	0			
3	-0.4	0.16	68	-8	64			
1	-2.4	5.76	84	8	64			
0	-3.4	11.56	99	23	529			
4	0.6	0.36	67	-9	81			
8	4.6	21.16	58	-18	324			
7	3.6	12.96	50	-26	676			
3	-0.4	0.16	78	2	4			
	$\Sigma(Y)$	$-M_{\gamma})^2=2262$						

Thank You

