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A B S T R A C T   

The study aims to showcase machine learning techniques in the application of medical datasets for improving 
identification of correlations and relationships between variables, which will lead to more informed decision- 
making. Unlike other studies, intensive statistical modelling is used to understand and find the effective of 
variables cause to lead death due to Covid-19. Due to large dataset, not common approaches derive us to ideal 
conclusion. Furthermore, Bayesian technique is applied to generate predictive posterior distributions of the 
unknown parameters in the model in neural network as well as logistic regression, which helps us to avoid 
overfitting in machine learning applications and have additional measurements in assessing fitted model per-
formance. According to the results extracted from the statistical analysis, the Bayesian neural network demon-
strated superior performance in terms of classification measurements such as AUC (84.66%), F1 (87.11%), 
Precision (88.29%), and Recall (85.96%). The Bayesian logistic regression also performed well, but with slightly 
lower scores, achieving AUC (83.07%), F1 (85.59%), Precision (84.55%), and Recall (85.59%). In contrast, lo-
gistic regression (MLE) technique had the worst performance with very low scores (AUC = 52.38%, F1 =
57.55%, Precision = 57.01%, Recall = 58.10%). Regarding the variables’ association with mortality, stepwise 
forward selection helped to identify seven significant variables. Age was found to be the most significant variable 
in predicting the probability of dying, with patients in the age group of (18–44) having 12 times higher odds, 
patients in the age group of (45–64) having 123 more odds, and patients above 65 years old having 436 times 
more chance to die compared to patients below 18 years old. Severe coughing was also significant with 7.26 
odds, and patients suffering from diabetes had 2.82 times more chance to die. Moreover, SpO2 contributed to a 
decrease of 20% in the relative risk of dying from Covid-19 disease. Gender and Smoking did not show a sig-
nificant association with mortality. Finally, the Bayesian approach showed higher sensitivity and specificity than 
the classic neural network.   

1. Introduction 

In December 2019, a newly emerged infectious disease called 
Coronavirus disease 2019 (Covid-19), which was caused by the severe 
acute respiratory syndrome coronavirus 2 (SARS-CoV-2), was first 
identified in Wuhan, China. In Iraq, Covid-19 was first detected in 
Southern Iraq in February 2020 and as a result of the emergence of these 

incidents, the Kurdistan Region enacted stringent security measures. To 
determine the limit of spreading the virus in the region, several in-
dicators were used such as, the closure of schools and colleges, closure of 
borders and airports, cancellation of civic and religious events, and 
obligatory quarantine for people returning from trips abroad and en-
counters. More than 1.2 million people have died because of Covid-19, a 
new coronavirus disease that has affected over 45 million individuals 
globally [1,2]. 
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A broad spectrum of symptoms can be caused by Covid-19, as 14 
percent and 5 percent of the patients whose test results were confirmed 
had Covid-19 cases that were either severe or serious. The emerge 
damaged the healthcare system because it spread very quickly and was 
the main cause of death, consequently most of the available medical 
resources were secured to contain the virus. 

Some of the common symptoms identified initially were dyspnea, 
breathing rates below 30 breaths per minute, blood oxygen saturation 
levels under 93%, partial pressure of arterial oxygen to fraction of 
inspired oxygen ratio of<300 mmHg, and/or lung infiltrates of over 
50%. These indicators typically appeared within 24 to 48 h. Patients 
infected with severe respiratory issues required mechanical assistance 
for breathing and needed to be transferred to the critical care unit due to 
conditions such as shock, disseminated coagulopathy, or multiple organ 
failures. 

Numerous risk factors were considered to be effective including age, 
gender, ethnicity, as well as nutrition, lifestyle, and laboratory in-
dicators. It was generally agreed that the risk factors could help identify 
individuals who were more likely to contract the virus severely and face 
a higher risk of mortality. However, it was crucial to acknowledge that 
certain studies examine general risk factors associated with disease 
progression, whereas others focus on specific risk factors contributing to 
the advancement of Covid-19 into a critical stage [3]. Therefore, accu-
rate predictions had became point of concern to contain the disease and 
find proper medicine for patients. Bayesian statistical methods plays 
crucial roles and alongside of classical approach for model fitting, and 
several studies have been studied to investigate Covid-19 risk factors as 
well as the trend of uprising the spread by [4–8]. This is because rather 
than providing a single-point estimate for the unknown parameters, 
Bayesian methods also offer the whole posterior distributions for the 
unknown parameters and Markov chain Monte Carlo sampling is one of 
the prevalent approaches to calibrating Bayesian models. Also, artificial 
intelligence and machine learning techniques were compared with 
artificial neural network as studied by [9–14]. Moreover, Bayesian 
calibration is a more accurate method, and due to the complexity of the 
likelihood function, it is difficult to calculate the model’s parameters 
straightforwardly. Accurate Bayesian computation (ABC) can be applied 
to estimate the posterior distribution of unknown parameters when the 
likelihood function is hard to calculate or not known. ABC approaches 
are known for being inaccurate at dealing with large amounts of data 
and complicated models. This means that they can only be used for very 
simple models with a limited number of parameters. In addition, classic 
neural network may lead to overfitting when large number of inputs are 
entered in the model. In this study, we developed Bayesian neural 
network by involving Gibbs sampler while choosing prior values as well 
as hyperparameters which provided more accurate and fast convergence 
in the later stages of the HMC algorithm. Moreover, the contribution of 

the significant variables has not been pointed out in the current existed 
literature, thus all effective factors are stated in this study. 

When individuals contract SARS-CoV-2 and become severely ill, the 
pulmonary system is often the primary organ which is impacted. 
Nevertheless, the virus has the potential to impact any organ in the body 
and can result in effecting multiple organs. It’s important to assess how 
the organs are being impacted when treating patients. Disturbances in 
coagulation and vascular endothelium can cause injury to multiple or-
gans, even though no symptoms appears during the early stages. Fig. 1 
illustrates the parts of the human body that are affected by Covid-19. 

Covid-19 can cause an excessive release of cytokines, which can 
result in systemic inflammation, multi-organ injury, and even death 
[15]. This response is known as cytokine storm or hypercytokinemia. 
SARS-CoV-2 has the potential to distort endothelial cells in different 
parts of human’s body, resulting in inflammation, edema, vasocon-
striction and hypercoagulability. These changes contribute to organ 
ischemia. [16]. Referencing Wang, Nie [17], the inflammatory response 
may persist even as the viral load decreases. The risk of clotting is 
increased by blood vessel constriction, hypercoagulability, immobili-
zation, endothelial, inflammation and hypoxia [18]. Zhang, Xiao [19] 
pointed out it also causes moderate thrombocytopenia and elevated C- 
reactive protein. Furthermore, they also highlighted the effects of the 
virus on other body parts like DIC, lymphocytopenia, fibrin degradation 
products (FDPs) and D-dimer, and Covid-19 prognosis can be predicted 
by D-dimer levels and DIC. 

Skin symptoms in Covid-19 resemble those of other viral infections 
and inflammatory of chronic conditions, for example, psoriasis, acne, 
rosacea, and eczema. Skin manifestations accompanied by vascular 
complications may be attributed to immune complex causes, micro-
thrombotic, or neurogenic. A majority of Covid-19 infected cases with 
skin symptoms present with patchy erythematous rash, while others 
exhibit hives or widespread urticaria. The presence of skin manifesta-
tions does not indicate a more severe form of Covid-19. Cardiac com-
plications in Covid-19 can occur independently from pulmonary and 
other issues [20,21]. Individuals with preexisting coronary artery dis-
ease (CAD), latent CAD, or no CAD are at risk for ischemic cardiac injury 
caused by plaque rupture and thrombosis or inadequate oxygen supply. 

Autopsy studies have shown that individuals experiencing the acute 
stage of Covid-19 demonstrate a standard prolix alveolar injury that 
lacks organization and fibrosis. This type of damage occurs due to the 
disruption of endothelial and alveolar cells, which leads to the exudation 
of fluid and cells and the formation of hyaline membranes. [22]. Cola-
vita, Lapa [23] derived that cells in the ocular surface of the eye, 
including those in the cornea, within the conjunctiva, and in the sclera of 
the eye, possess both TMPRSS2 proteases and ACE2 receptors, which are 
necessary for SARS-CoV-2 infection. Roughly one-third of hospitalized 
individuals encounter ocular abnormalities, such as conjunctivitis, and 
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ROC Receiver Operating Characteristic Curve  

H. Abdulqadir Khidir et al.                                                                                                                                                                                                                   



Alexandria Engineering Journal 78 (2023) 162–174

164

this occurrence is more prevalent in individuals with more severe ill-
nesses. Ocular involvement can manifest in the initial stages of the 
illness, and cells on the ocular surface are potential entry points and 
reservoirs for the virus. Shedding of the virus in ocular secretions can be 
a source of transmission, and the virus can sustain its infectivity in the 
eye for a duration of up to three weeks. 

Likewise, Covid-19 can cause a suppression of brain stem reflexes, 
including the reflex responsible for detecting oxygen deprivation. 
Neurological symptoms may either be the sole presenting symptoms or 
present in combination with respiratory or other symptoms and are 
more frequent in severe cases of the disease. Abnormal levels of oxygen 
and carbon dioxide may contribute to these symptoms, and this could be 
delirium, headaches, confusion, dizziness, altered consciousness, and 
difficulty awakening [24]. 

The article is structured as follows: In Section 2, the concept of sta-
tistical Bayesian learning is highlighted, shedding light on their signif-
icance and applications. This section provides a comprehensive 
understanding of the theoretical foundations. To validate the chosen 
approach, Section 3 presents a practical application, offering a 
comparative analysis to showcase its effectiveness. The application of 
the approach to a real-world problem adds credibility to the research. 
Section 4 serves as the discussion where intensive arguments are pro-
vided, summarizing the key findings and implications of the study. 
Finally, the rest is for limitation, conclusion as well as recommendation 
which offers insights into the broader implications and potential future 
directions. 

2. Methodology and statistical learning of Bayesian inference 

2.1. Methodology 

This chapter presents the patient’s profile and methodology, 
including medical history, laboratory results and the person’s de-
mographics. No personal information about the patients is explored such 
as names, phone numbers, or addresses. The process of discovering 

patterns, correlations, changes, deviations, and statistically significant 
structures and events in large datasets is considered. Distributions that 
characterize an observable property (descriptive statistics) are gener-
ated by classical statistical methods and used to assess the validity of a 
sample drawn from a larger population. To optimize Neural Network 
calculations, we present a novel metric that incorporates MCMC ap-
proaches and then evaluate the results against the standard approach. 

2.2. Research method 

2.2.1. Site of study 
We have used secondary data of a cross-sectional study type since the 

information was already collected by the hospitals themselves. The data 
includes patients from 2020 to 2021. SPSS Version 25 software, Python 
as well as R code-based programming language and writing materials 
have been used to generate the results. 

2.2.2. Study population 
The target population comprised patients of Covid-19 taken from the 

hospital in the recorded of 2020 to 2021. The study population 
comprised the Bayesian ANN analysis with MCMC approaches of 
Assessing Characteristics and Risk Factors of Covid-19 cases. 

2.3. Data capture and analysis strategies 

2.3.1. Data cleaning 
The analysis is primarily impacted by many missing participants in 

our data, and we, thus, have removed most extreme and unpredictable 
values from the dataset. In addition, the data has also been verified for 
consistency. The data from patients’ files are captured in a Microsoft 
Excel spreadsheet which is n = 537. 

2.3.2. Data analysis 
Once the data set was cleaned and organized, we utilized R software 

to import and analyze the data. The frequencies and percentages of all 

Fig. 1. Human’s Body with description of Covid19 Impact.  
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variables were calculated using R software. As we already defined that 
our dependent variable Covid-19 risk factors are in binary form as dis-
charged alive/died, the logistic regression model was first applied. Due 
to existing the association of these different risk factors, statistical ap-
proaches that analyse their relationships were needed to examine their 
effects as well as multicollinearity. Our new proposed term is to involve 
MCMC techniques for optimization in Neural Network calculation and 
then compare it to classic neural network with single point estimation. 

2.4. Bayesian logistic regression model 

In recent years, the Bayesian inference framework has gained 
popularity as a more appealing method for estimating parameters in 
logistic regression. This approach offers easier interpretability of 
parameter estimation and yields more dependable results for smaller 
samples. Bayesian inference provides a valuable approach for merging 
expert knowledge, also known as prior beliefs with data to generate 
posterior distribution. Consequently, in the event of new data being 
gathered, the Bayesian framework can be utilized to revise current 
knowledge by incorporating fresh data. This updating process can be 
repeated as additional data is accumulated in the future. The funda-
mental principle behind all Bayesian inference is Bayes’ theorem, which 
has been extensively explored in literature by scholars such as[25–29]. 
To comprehend the utilization of the Bayesian approach in parameter 
estimation, let β denote the vector containing k unknown parameters 
and let X represent the vector containing n observations. 

β = (β1, β2,⋯, βk)

X = (x1, x2,⋯, xn)

Based on Bayes’ theorem, the posterior probability distribution P(β/X)
can be expressed. 

P(β/X) =
p(β)*p(X/β)

∫
p(β)*p(X/β)dX

(1) 

The likelihood and Log Likelihood Function. 
The logistic regression model’s likelihood is determined as follows: 

f
(y

X
, β
)
=

∏n

i=1
pyi (1 − p)1− yi (2)  

logf (y/X, β) =
∑n

i=1
− yi(p)+ (1 − yi)log(1 − p) (3) 

By replacing p with 
[

1
1+e− Xβ

]
and doing some calculations, the above 

formal becomes 

logf (y/X, β) = βX(y − 1n) − 1n
[
log

(
1 + 1 + e− Xβ) ] (4) 

We employ a normal distribution with a mean of zero for each un-
known parameter as a starter, which leads to the prior distribution 
taking the shape of a normal distribution. We propose a multivariate 
normal prior for β: 

β N
(

0, σ2
β

)

Thus, its probability density function log without constant terms is as 
followings: 

logp
(

β
/

σ2
β

)
= −

1
2

logσ2
β −

βT β
2σ2

β
(5) 

The log of the posterior distribution is driven below: 

logf
(

β
/

X, y, σ2
β

)
∝βX(y − 1n) − 1n

[
log

(
1 + e− Xβ) ] −

βT β
2σ2

β
(6) 

As a result, the gradient function of the leapfrog function can be 

written as: 

Δβlogf
(

β,X, y, σ2
β

)
∝X

(

y − 1n +
e− Xβ

1 + e− Xβ

)

−
β
σ2

β
(7)  

2.4.1. Markov Chain Monte Carlo: The basics 
Markov Chain Monte Carlo (MCMC) is a diverse category of 

computational techniques for estimating integrals and generating pos-
terior samples. In Bayesian analysis, MCMC algorithms are mainly 
employed to approximate the posterior distribution by generating 
simulated samples. The Metropolis-Hastings (MH) algorithm is a widely 
used general principle for generating posterior samples in Bayesian 
analysis. The Gibbs technique sampler is a specific instance of the MH 
process [30]. 

2.4.2. Hamiltonian Monte Carlo algorithm 
By utilizing a guided proposal generation scheme, Hamiltonian 

Monte Carlo (HMC) enhances the efficiency of the MH algorithm. HMC 
achieves this by leveraging the gradient of the logarithm of the posterior 
distribution, which guides the Markov chain towards areas of higher 
posterior density where most samples are concentrated. Therefore, a 
well-optimized HMC chain is capable of accepting proposals at a 
significantly higher rate compared to the traditional MH algorithm [31]. 
Further detailed explanations can be found in other sources, such as 
[32,33]. The Hamiltonian function, denoted as H(β, p), is expressed as 
the sum of potential energy U(β) and kinetic energy K(p), where β and p 
are both in the real k − dimensional space, i.e., β,p ∈ Rk. Specifically, the 
expression is given as H(β, p) = U(β)+K(p). With this formulation, we 
possess/obtain. 

H(β, p) = − logf (β)+
1
2
pT M− 1p. (8) 

The full package of the Hamiltonian technique is provided in the 
Algorithm below:  

Hamiltonian Monte Carlo Algorithm 

Input(β(0), logf
(

β/X, y, σ2
β

)
,M,N,L,∊)

Settingstartingpointforlogf
(

β/X, y, σ2
β

)

fort = 1toN 
p = Rand.noramal(0,M)

β(t) = β(t− 1), β̃ = β(t− 1), p̃ = p 
fori = 1toL 

β̃, p̃→Leapfrog
(

β̃, p̃, ∊,M
)

Endfor 

∝ = min
(

1,
exp

(
logf

(
β̃
)
−

1
2
p̃TM− 1 p̃

exp
(

logf
(

β̃
(t− 1) )

−
1
2
pTM− 1p

⎞

⎟
⎠

withprobability∝,β(t) = β̃andp(t) = − p̃ 
Endfor 
Returnβ(1),β(2),⋯β(N)

Run (LeapFrog Function)  

2.5. Bayesian neural network approach 

A Bayesian neural network (BNN) refers to a type of neural network 
architecture that integrates Bayesian inference principles. Similar to 
traditional neural networks, a BNN consists of layers of interconnected 
nodes, or neurons, that receive inputs, apply weights and biases, and 
produce outputs through activation function. However, unlike tradi-
tional neural networks, a BNN is designed to model not only the map-
ping from inputs to outputs but also the uncertainty associated with that 
mapping. Fig. 2 demonstrates the architecture of both Bayesian neural 
networks as well as neural network with point estimation. In a BNN, the 
biases and weights of the neural network are treated as random variables 
with prior distributions. The prior distributions reflect the prior belief or 
uncertainty about the values of the weights and biases. Bayesian 
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inference aims to update the prior probability distributions using the 
observed data, resulting in posterior distributions that reflect the 
updated beliefs or uncertainty about the values of the weights and 
biases. 

2.5.1. Bayesian learning process 
The Bayesian learning process begins with the definition of a model, 

M, and a prior distribution p(w) for the model parameters. After exam-
ining additional data used to update, then the updated distribution of 
priors is utilized to create the posterior distribution using Bayes’ rule. 

P(W/X)∝p(W)*p(X/W) (9)  

2.5.2. Likelihood 
In statistics, the likelihood function is driven from its original 

probability density function for n data points in multiplying the function 
for each joint (x, y) dataset. Its general written formula is as followings: 

L(W/X) =
∏n

i=1
p
(
y(i)|X(i),W

)
(10) 

To write in more detail explicitly for two classes as in our cases where 
the sigmoid function is intended to be used for the output layer, Equa-
tion (11) provides more insights on the likelihood function: 

p(y = 1|X,W) = [1 + exp( − f (x,w))]− 1 (11) 

Free parameters which are called (weights) in the model must be set 
corresponding to the training set size, the noise level as well as the target 
function complexity when computing classical estimation (error mini-
mization) for the Multi-Layer Perceptron (MLP). However, limiting the 
network size is no longer an issue in the Bayesian technique, but it is 
wise to minimize the number of hidden units in practice for computa-
tional purposes. In addition, referring to Neal [32], for small sample 
sizes, the process of converging tends to be Gaussian while implying 
limiting hidden unit numbers which is considered as a feasible practice 
in such circumstances. The predictive distribution is achieved by 
calculating the model’s integration of predictions regarding the poste-
rior distribution to predict the new output y(n+1) when new values of 
input x(n+1) is available. 

ŷ(n+1)
k =

∫

fk
(
X(n+1),w

)
p(w, α, τ/X)dwατ (12)  

2.5.3. Hybrid Monte Carlo algorithm for BNN 
The Hybrid Monte Carlo (HMC) algorithm is a computational 

method used in statistical physics, Bayesian statistics, and other fields to 
sample from complex probability distributions. The algorithm combines 
molecular dynamics simulations with Markov Chain Monte Carlo 
(MCMC) sampling to explore high-dimensional spaces efficiently. 
Equation (12) represents the expectation of function f(X(n+1);W) with 
regards to the parameter’s posterior distribution. The Monte Carlo 

method can implement to approximate this by drawing a sample of 
values W(t) from the posterior distribution. 

ŷ(n+1)
k ≈

1
N

∑N

t=1
fk
(
X(n+1),w(t) ) (13) 

In the analysis process, the hybrid Monte Carlo (HMC) algorithm is 
applied to compute the parameters, while Gibbs sampling is used to 
calculate the hyperparameters. HMC is a powerful Monte Carlo method 
that leverages gradient information to reduce random walk behavior 
commonly observed in the Metropolis algorithm. The gradient provides 
direction for jumping to states with higher probability. Additionally, 
Gibbs sampling is used to estimate hyperparameters, which helps to 
reduce the amount of tuning required for HMC to achieve satisfactory 
performance. 

2.5.4. Variational inference 
Variational inference aims to approximate the exact posterior dis-

tribution p(W/X) using a parameterized distribution qθ(W), called the 
variational distribution, instead of sampling from it directly. This vari-
ational distribution is defined by a set of weight parameters that are 
learned to make qθ(W) as similar as possible to p(W/X). To measure this 
similarity, the Kullback-Leibler divergence (KL-divergence) is 
commonly used [34], which is based on Shannon’s information theory 
[35] and measures the distance between two probability distributions. 

In Bayesian inference, the KL-divergence measures the number of 
additional bits, on average, that are needed to encode a sample from the 
true posterior distribution using a code optimized for the approximate 
posterior distribution. This can be expressed mathematically as: 

DKL(qθ(W)‖p(W/X) =
∫

∅
qθ(W)log

qθ(W)

p(W/X)
dW (14) 

To circumvent this, a distinct formula known as the evidence lower 
bound (ELBO) can be employed as a loss function, which is straight-
forward to derive. 
∫

∅
qθ(W)log

(
p(W,X)
qθ(W)

)

dW = log(p(X) − DKL(qθ(W)‖p(W/X) (15) 

Since log(P(X)) is exclusively determined by the prior, the minimi-
zation of DKL(qθ(W)‖p(W/X) is equal to the maximization of the evi-
dence lower bound (ELBO). 

2.5.5. Bayes by backpropagation 
Variational inference is a powerful tool for the Bayesian inference 

method, but it needs to be adapted to work in the deep learning context. 
The primary challenge is that stochasticity prevents backpropagation 
from working properly at the internal nodes of a network [36]. To 
address this issue, several solutions have been proposed, such as prob-
abilistic backpropagation [37] and Bayes-by-backdrop [38]. Bayes-by- 
backprop is a practical implementation of stochastic variational 

Fig. 2. Left: Bayesian Neural Network with probability distribution over weights. Right: Classic Neural Network with point estimates for weights.  
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inference (SVI) combined with a reparameterization trick [39], which 
ensures that backpropagation utilizes ordinarily. The full package of the 
Bayes-by-backprop technique is provided in the Algorithm below:  

Bayes by Backprop Algorithm 

Set∅ = ∅0 

fort = 1toN 
sample∊ q(∊)
W = t(∊,∅)

f(W,∅) = log(q∅(W) ) − log(p(y/X,W)P(W)

Δ∅f = backprop∅(f)
∅ = ∅ − αΔ∅f 
Endfor  

3. Statistical analysis results 

3.1. Descriptive and visualization analysis 

It is begun with descriptive statistics since it is considered a vital 
stage of any study’s outcomes where initial thoughts on the nature of the 
dataset are found and sometimes enabling the researchers to find po-
tential patterns among the explanatory and response variable. To 
simplify the discussion and easy to follow, it was split into two parts, 
exploring the association of predicted variables with quantitative and 
qualitative covariates separately. 

3.1.1. Response association with quantitative variable 
Table 1 provides attention to the laboratory measurements which 

affects on the response variable and whether the increase or decrease 
unit of any of them caused Covid-19 patients to die. For instance, the 
mean value of HR for those discharged alive in the hospital was 
measured at (84.7821 ± 13.7939) while it was (107.9230 ± 16.4631) 
for those who died, thus it led us to report that the disease had an impact 
on increasing heart rate pulse. Additionally, a notable disparity in mean 
values was observed for the CRP variable, with 16.6035 for recovered 
cases and 48.3684 for deceased cases. Furthermore, when compared to 
upper respiratory tract infections, individuals who succumbed to Covid- 

19 exhibited a significantly elevated mean value. (22.6862 ± 4.6901 vs 
18.8161 ± 1.8521, p-value < 0.001), and mean value of quadrant 
(2.5161 ± 1.0671 vs. 3.1837 ± 1.1263, p-value < 0.001) and pulmo-
nary (33.2757 ± 17.8723 vs. 39.7602 ± 16.9315, P-value < 0.001) 
were slightly higher and significantly differed. As stated, no significant 
difference occurred due to Neutrophil results between died and recov-
ered cases with (3.1601 ± 0.4974 vs. 3.1403 ± 0.6824, p-value =
0.6993). Upon admission, individuals who eventually died from severe/ 
critically ill Covid-19 exhibited higher body temperatures, lower SpO2 
levels, as well as pulmonary opacity values and higher CT image 
quadrant scores. 

In addition, infected cases who died from Covid-19 had higher 
fibrinogen, C-reactive protein and D-dimer levels than recovered cases. 
Similarly, those who passed away had lower APTHT, lymphocyte, 
platelet, and albumin count as per the results provided in Table 1. Fig. 3 
illustrates the distribution of the variables against the response variable 
where one can simply identify the effectiveness of the covariates on the 
dependent variable. For example, regarding CRP, HR, SpO2, Lympho-
cyte and WBC_Count measurements, the distribution of the survived and 
dead cases was split for two different areas with a very low rate of 
overlaps, and these variables were already providing insights to be listed 
on predicting the probability not surviving a patient. However, it was 
not wise to decide at this stage to highlight variables that had an impact 
on increasing the risk of dying from the disease since further tests are 
required to be implemented. 

3.1.2. Response association with qualitative variables 
The study calculated figures for nine categorical variables were 

counted to estimate the likelihood of mortality due to Covid-19. Table 2 
calculates the ratio of death rates per gender (male death rate: female 
death rate) in Covid-19 patients. The male death rate was 25% times 
higher than the overall female death rate. This means that according to 
the cohort included in this study, men make up to 20.5% of all Covid-19 
deaths while only 16% of the death rate was recorded as women. 

Concerning Smoking factor, a total of 537 Covid-19 infected in-
dividuals are included and observed in this study, 196 of whom (36.5%) 
experienced disease progression and 214 (40%) with a history of 
smoking. Among those with a history of smoking, 13.4% experienced 
disease progression and died, compared with 23.1% of non-smokers. 
The analysis revealed no significant association between ever smoking 
and Covid-19 progression. Furthermore, the statistical results indicated 
that stroke was not significantly linked to Covid-19 mortality, as dis-
played in Table 2. The mortality rate among patients who had a stroke 
was lower than those without stroke which is 13.8% and 22.7% 
respectively. On the contrary, patients with no previous history of stroke 
had shown greater improvement and recovery which is 38.6% compared 
to recovery among patients who had previous history of stroke which is 
25%. 

3.1.3. Model building Analysis 
To avoid multicollinearity issues which result high p-value as well as 

unreliable estimated parameters while building up models with espe-
cially multiple variables which of course influence the predicted values 
afterward. It was most likely believed that there might be a high cor-
relation among the covariates and referencing Fig. 4, it was noted that 
Fibrinogen had a moderate and positive relationship with Age and. 

3.2. Model fitting 

Forward selection was used to determine which variables should be 
included in the final model, starting with a simple null assumption. First, 
the null model with (Status ~ 1) was calculated, and its residual devi-
ance was recorded. This model has (n-1) degrees of freedom, where n 
refers to the total number of observations. This model was assumed to be 
poor, so additional analysis was required. Then, for each explanatory 
variable, only the response variable was used, yielding Status ~ Age, 

Table 1 
Descriptive statistics of laboratory results under investigation recovered and 
died cases.  

Variables Recovered Died P- 
Valuea 

N Mean ± SD N Mean ± SD 

Temperature 341 37.5560 ±
1.9746 

196 38.2954 ±
1.6640  

0.0000 

HR 341 84.7821 ±
13.7939 

196 107.9230 ±
16.4631  

0.0000 

Respiratory 341 18.8161 ±
1.8521 

196 22.6862 ±
4.6901  

0.0000 

Quadrant 341 2.5161 ± 1.0671 196 3.1837 ± 1.1263  0.0000 
Pulmonary 341 33.2757 ±

17.8723 
196 39.7602 ±

16.9315  
0.0000 

Neutrophil 341 3.1601 ± 0.4974 196 3.1403 ± 0.6824  0.6993 
Lymphocyte 341 1.3683 ± 0.2730 196 0.7750 ± 0.2106  0.0000 
Platelet 341 192.9123 ±

22.9700 
196 172.7015 ±

27.0225  
0.0000 

Albumin 341 41.4877 ±
2.2717 

196 38.5495 ±
2.2308  

0.0000 

Creatinine 341 66.6337 ±
7.4247 

196 68.2755 ±
9.1109  

0.0238 

APTHT 341 33.5270 ±
2.5521 

196 32.2791 ±
2.2824  

0.0000 

Fibrinogen 341 3.3686 ± 0.3970 196 4.4469 ± 0.8309  0.0000 
SpO2 341 96.6765 ±

3.6453 
196 91.1806 ±

4.4007  
0.0000 

WBC_Count 341 4.9604 ± 0.9252 196 3.8378 ± 0.7627  0.0000 
CRP 341 16.6035 ±

19.9936 
196 48.3684 ±

30.8121  
0.0000 

D_dimer 341 0.4493 ± 0.2345 196 0.6235 ± 0.2383  0.0000  

a Continuous variable: T-test or Mann-Whitney tests as appropriate. 
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Status ~ Gender, and so on. Each model was evaluated by calculating its 
residual deviance, and the one with the lowest value was selected for 
further analysis. The model with the Age variable included was chosen 
to the next phase and proceeded the same as above where their AIC as 
well as Nagelkerke R-Sqaure were measured and recorded as shown in 
Table 3. As a result, this analysis led to the identification of the 7 most 
significant variables. 

Table 4 illustrates the best-fitted model from both approaches. 
Similar to univariate outputs, the same conclusion can be made where 
the Bayesian approach performed better according to the standard er-
rors of the coefficients, although at Age (2) and Age (3) the MLE tech-
nique produced lower SE of the parameters. 

3.2.1. Parameter interpretation 
Tables 4 and 5 are the most important part of logistic regression 

modeling where the magnitude of the variables can be identified. To 
begin with, Age (18–34) coefficient (2.2171) which stands for 18–35 
years old provided in Table 4, is statistically significant (associated with 
a p-value of 0.05), implying that the Age factor does influence the risk of 
being died from Covid-19 disease. Because it is a positive number, we 
can conclude that age raises the risk of developing the disease. There-
fore, the odds ratio of Age (18–34) was calculated as approximately 12 
with 95%CI (0–0) as shown in Table 6. This means holding other vari-
ables as constant, a patient in the age group (18–44) had 12 times higher 
chance of losing their life because of Covid-19 compared to individuals 
who were<18 years old, and people in the age group (45–64) had 123 
more odds to die as well as 436 times more chance in age group more 65 
years old than patients were<18 years old. It can be noticed that 
younger people had a higher chance to survive the disease. Similarly, 
coughing symptoms severely identified among admitted patients had a 
significant impact on increasing the odds to die. This pointed to the that 
inpatient with coughing will rise the odds of dying by Exp (1.9824) =
7.26 times as seen in Table 5. That being said, an inpatient with 
coughing had 7 times higher chances to die compared to those not 
having a strong cough. Like coughing, diabetes was also found to be 
statistically significant with a coefficient (1.2976) and p-value < 0.001, 
and recognized to increase the risk’s odds by Exp (1.2976) = 2.8287. 
This enables us to report that there was a 182% increase in the odds of 
passing away with the presence of diabetes. In addition, people pos-
sessing Covid-19 as well as hypertension had high risk and pointing to 
the result, the factor had a positive coefficient value with (2.0048) and 
was statistically significant under 0.05 level which led to an increase in 
the logit of predicting dying. Thus, the odds of a patient died who had 
hypertension was 6.6 times higher than patients who did not suffer from 
hypertension with a 95% CI of (2.495 and 12.097). Moving to SpO2 
which refers to measured oxygen for hospitalized cases, with a coeffi-
cient (-0.2132), and its odds ratio was (0.80). Hence, SpO2 is associated 
with a 20% (1 – 0.80 = 0.20) reduction in the relative risk of dying. In 
addition to that, for a 1-unit increase in the corresponding oxygen’s level 
of patient admitted to hospital due to the disease is associated with a 
lower risk of dying due to Covid-19. 

Referencing the effect of white blood cell count on the probability of 
dying holding other variables as constant, the estimated parameter was 

Fig. 3. Density Distribution for the response variable.  

Table 2 
Descriptive Statistics of Categorical Variables Associated with Response 
Variable.  

Variables Levels Recovered Died P-Valuesb 

N % N % 

Gender Male 199  37.1% 110  20.5% 0.6140  
Female 142  26.4% 186  16.0% 

Age <18 98  18.2% 4  0.7% 0.0000  
19–44 167  31.1% 39  7.3%  
45–64 53  9.9% 55  10.2%  
65+ 23  4.3% 98  18.2% 

Smoking Yes 142  26.4% 72  13.4% 0.2630  
No 199  37.1% 124  23.1% 

Fever Yes 137  25.5% 112  20.9% 0.0000  
No 204  38.0% 84  15.6% 

Cough Yes 142  26.4% 126  23.5% 0.0000  
No 199  37.1% 70  13.0% 

Sputum Yes 99  18.4% 75  14.0% 0.0280  
No 242  45.1% 121  22.5% 

Hypertension Yes 135  25.1% 133  24.8% 0.0000 
No 206  38.4% 63  11.7% 

Diabetes Yes 119  22.2% 133  24.8% 0.0000  
No 222  41.3% 63  11.7% 

Stroke Yes 134  25.0% 74  13.8% 0.7240  
No 207  38.5% 122  22.7% 

aCategorical variables: Fisher Exact or Chi-square tests as appropriate. 
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(-0.9886), which means that with one unit increase from white blood 
cells, the logit of predicting dying decreases. Turning to the odds ratio, it 
was estimated to be 0.37; for every 1 increase in white blood cell count, 
an infected Covid-19 person had a 63% chance to survive than not with a 
95% CI of (0.195 and 0.551). The CRP turned out to be contributing in 
increasing the odds of dying with a coefficient (0.0225), which is posi-
tive. One can infer that an increase in CRP was linked to a higher 
probability of death from Covid-19. It was important to state that CRP 
was associated with a 2.72% rising the chance to die. Although the effect 
size was small, it was statistically significant with a p-value < 0.001. 

3.2.2. Traceplots and histograms illustration of posterior distribution 
Various methods exist to calculate Bayesian credible intervals, but 

for this study, the 95% intervals were computed for each of the pa-
rameters. Table 6 displays the 0.025 and 0.975 quantiles for each 
parameter, as well as the 25th, 50th, and 75th percentiles. The credible 
intervals for each parameter can be determined by listing the values in 
the first and last rows. In particular, the credible interval for Age is 
positively skewed and does not encompass zero, implying that there is 
evidence that the Age group was positively related to the odds of not 
surviving the disease. However, SpO2 as well as WBC were negatively 
associated with the response variable confirming a negative link. The 
credible intervals also provide us insights into the posterior distribution 
and whether can be reliable or not. 

To start, examine the traceplots of the first 100 trials after the burn-in 
period (refer to Fig. 5). In addition, a histogram can be used to represent 
the posterior distribution of each unknown parameter, which gives an 
idea of the parameter’s marginal distribution. 

There are additional ways to summarize our findings such as mini-
mum, maximum, mean, and standard deviation. Table 7 shows some 
basic statistical measures of the posterior distribution and enables us to 
understand the distribution easier. 

3.2.3. Model accuracy and diagnosis assessment 
Low values indicate that the model is a better fit to the data in both 

Fig. 4. Correlation Heatmap Matrix for all variables study.  

Table 3 
Result of stepwise forward model selection approach for Bayesian logistic 
regression (MCMC) and classic logistic regression (MLE).  

Models MLE Approach MCMC Approach 

AIC Nagelkerke R-Sqaure AIC Nagelkerke R-Sqaure 

Model 1  314.500  48.000%  308.4967  47.970% 
Model 2  224.700  68.700%  216.2335  68.660% 
Model 3  183.970  76.500%  174.1632  76.430% 
Model 4  171.490  78.900%  159.7710  78.870% 
Model 5  160.870  81.000%  148.3420  82.310% 
Model 6  146.35  83.600%  132.4520  84.643% 
Model 7  142.21  84.500%  129.3280  85.212%  
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cases, which means the observed and fitted values are similar. To 
evaluate the model’s fit, goodness of fit statistics was computed as 
indicated in Table 8. The Hosmer-Lemeshow statistic was not signifi-
cant, indicating that there was no evidence of model is fit, and the lo-
gistic analog of R2 stated that about 85% of the uncertainty in the 
presence of no surviving from Covid-19 could be of the Age, SpO2, WBC, 
Diabetes, Cough, Hypertension and CRP variables. 

3.3. Result of Bayesian neural network 

The confusion matrix for (BNN) and classic neural networks were 
calculated and presented below to help us identify their strengths. 
Following the architecture shown in Fig. 6 and Table 9, it was obvious 
that the Bayesian neural network approach achieved way better results 
with an AUC value 84.66% (95% CI of 83.26% − 85.21%) than the point 
estimation neural network with an AUC value 81.38% (95% CI of 
80.25% − 82.03%). 

3.3.1. Relative importance analysis of Bayesian neural network 
To determine the contribution of each input variable in predicting 

death cases, the role of each input to the output is computed by 

multiplying the input-hidden weight with the hidden-output weight. 
The magnitude and direction of the connection weights determine the 
relative contribution, with input variables having higher connection 
weights representing higher intensities of signal transfer and therefore 
being more important than those with lower weights. To simplify the 
interpretation of relative importance, the attributable value of each 
input variable on the output is divided by the sum of contributions and 
expressed as a percentage, as demonstrated in Fig. 7. In comparison to 
the other factors, CRP, SpO2, Age, and Diabetes are the strongest pre-
dictors of increasing chances to die due to Covid-19. 

3.4. Confusion Matrix analysis of applied models 

It has come to the stage where all applied methods can be summa-
rized into reasonable findings to understand and easy to follow on the 
model’s performances. Table 10 illustrates the potential key character-
istics extracted from the model after being tested with unseen datasets 
which was the core objective of this study. Initially, the AUC measure-
ment is a performance evaluation metric for machine learning classifi-
cation models that is calculated by dividing the number of true positives 
and true negatives by the total number of positive and negative obser-
vations. Bayesian neural network had the highest value with 84.66%, 
followed by Bayesian logistic regression with 83.07%, classic neural 
network with 81.38% and Logistic regression (MLE) with 80.95%. 
However, accuracy cannot judge the model’s performance alone and 
there are other measurements such as F1-score, precision as well as 
recall. 

Both neural network approaches scored the highest precision rates 
with 88.29% and 86.24% for the Bayesian neural network and classic 
neural network respectively, then followed by logistic regression 
(MCMC) and MLE with a success rate in predicting positive records by 
85.59% and 84.55% correspondingly. Moreover, recall perspective 
measurement, Bayesian neural network, classic neural network, logistic 
regression (MCMC) and logistic regression (MLE) all had similar recall 
rates of close to 85%. This denotes the model’s capability to appropri-
ately foresee positives from definite positives. Unlike precision, which 
calculates the proportion of positive predictions made by the model that 
were correct, recall calculates the proportion of all positive cases that 
were correctly identified by the model. F1-Score was also calculated for 
all eight methods. It was more useful than accuracy since an uneven 
class distribution was present in our case. Bayesian neural network came 
out to be on the top of the list resulting in the highest F1-score of 
87.11%. Logistic regression (MCMC) turned out to have the second- 
highest F1-score rate by 85.59%. This can be interpreted as the 
model’s capacity to both catch positive cases and be precise with the 
cases (Table 10). 

Fig. 8 displays the ROC plot of the methods where the performances 
can easily be detected and followed. Because ROC curves can be 
misleading in imbalanced datasets as in this case, precision and recall 
figures are frequently used instead, where the number of true positive 
labels is very different from the number of true negative labels. 

Table 4 
The best-fitted model outcomes by Bayesian logistic regression (MCMC parameter estimation).  

Included Variables Classic Logistic Regression (MLE) Bayesian Logistic Regression (MCMC) 

Coefficients SE P-value Coefficients SE P-value 

Intercept  28.6433  6.1532  0.0000  27.6297  4.2894  0.0000 
Age (18–34)  2.2171  0.9668  0.0218  2.4636  1.0315  0.0000 
Age (35–65)  4.8459  1.0393  0.0000  4.8139  1.0792  0.0000 
Age (>65)  6.0925  1.0975  0.0000  6.0791  1.0708  0.0000 
SpO2  − 0.3333  0.0655  0.0000  − 0.2132  0.0453  0.0000 
WBC_Count  − 1.1157  0.2649  0.0000  − 0.9886  0.2441  0.0000 
Diabetes (Yes)  1.2976  0.5109  0.0111  1.0398  0.4518  0.0000 
Cough (yes)  2.0109  0.5858  0.0006  1.9824  0.5305  0.0000 
Hypertension (Yes)  2.0048  0.5565  0.0003  1.8886  0.4864  0.0000 
CRP  0.0225  0.0093  0.0156  0.0268  0.0085  0.0000  

Table 5 
Odds Ration and 95% Confidence Interval of Odds Ratio for Bayesian logistic 
regression coefficients estimated by MCMC.  

Variables in the model Odds Ratio 
(MCMC Logistic Regression) 

95% CI of Odds Ratio 

Age (18–44) 11.7469 9.380 17.069 

Age (45–64)  123.2075  106.592  175.452 
Age (>65)  436.6317  421.492  521.402 
SpO2  0.808  0.630  0.815 
WBC_Count  0.3721  0.195  0.551 
Diabetes (Yes)  2.8287  1.345  9.963 
Cough (Yes)  7.2601  2.370  11.547 
Hypertension (Yes)  6.6104  2.495  12.097 
CRP  1.0272  1.004  1.042  

Table 6 
Credible interval finding of posterior parameters.  

Variables 2.50% 25% 50% 75% 97.50% 

(Intercept)  24.4444  32.23747  37.15356  41.72098  51.58415 
Age (18–44)  0.5287  1.86368  2.52554  3.26089  4.96312 
Age (45–64)  3.4288  4.62444  5.41182  6.20153  7.90676 
Age (>65)  4.482  5.9219  6.74958  7.56156  9.35048 
SpO2  − 0.5124  − 0.41129  − 0.3613  − 0.31581  − 0.2351 
WBC_Count  − 1.7747  − 1.43344  − 1.23675  − 1.04139  − 0.72505 
Diabetes (Yes)  2.5318  1.75568  1.37872  1.06351  0.40886 
Cough (Yes)  3.5371  2.69687  2.24775  1.79789  1.05507 
Hypertension 

(Yes)  
3.4463  2.60355  2.20743  1.83704  1.11822 

CRP  0.005  0.01708  0.02368  0.03057  0.04452  
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4. Discussion 

Within the context of a Bayesian methodology, the primary con-
centration of this work is on the integration of Bayesian neural networks, 
classic neural networks, Bayesian logistic regression and logistic 
regression (MLE). It is possible to make predictions more stable and 
accurate by converting the predictions into a prior distribution. Then, 
utilizing them as prior knowledge in the Bayesian inference process by 
exchanging the predictions from neural networks with predicted values 
for the linear regression. This will result in an improved outcome and in 
this instance, we applied an override Bayesian neural network and 

Bayesian logistic regression that can provide accurate result predictions 
in the presence of uncertainty. This would be the method of choice in an 
ideal world. 

Additionally, the treatment for the Covid-19 infection is only a 
temporary fix utilizing the technique that is advised and after adjusting 
for several other variables, it was found that age had a significant cor-
relation with the state the patients. As age increases, the odds of living 
become less likely to increase, and age has been recognized as the pri-
mary variable in Covid-19 patients to impact the outcome ever since the 

Fig. 5. Traceplots and Histogram charts of posterior distribution estimated for Bayesian logistic regression model (MCMC).  

Table 7 
Descriptive statistics (Minimum, Maximum, Mean, Median, SD) of the posterior 
findings.  

Variables Mean Median SD Minimum Maximum 

(Intercept)  27.6297  21.4559  4.2894  6.1509  35.9283 
Age (18–44)  2.4636  2.3519  1.0315  − 0.7125  6.1421 
Age (45–64)  4.8139  4.6886  1.0792  1.8271  8.8339 
Age (>65)  6.0791  5.9705  1.0708  3.2534  10.4790 
SpO2  − 0.2132  − 0.2129  0.0453  − 0.3733  − 0.0390 
WBC_Count  − 0.9886  − 0.9874  0.2441  − 1.9287  − 0.2663 
Diabetes (Yes)  1.0398  1.0305  0.4518  0.3077  2.9687 
Cough (Yes)  1.9824  1.9632  0.5305  0.2308  4.1327 
Hypertension (Yes)  1.8886  1.8610  0.4864  0.2638  3.6134 
CRP  0.0268  0.0267  0.0085  − 0.0031  0.0547  

Table 8 
Test of goodness-of-fit for the final model.  

Statistic Value df P-value 

Hosmer–Lemeshow (Ĉ)  7.653 8  0.607 
Deviance (G2)  120.11 338  0.000 
Nagelkerke R-Sqaure  85.21%    

Fig. 6. Bayesian Neural Network Applied on the dataset’s study.  
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beginning of the pandemic. 
The early Chinese records suggest that the case-fatality rate (CRF) 

rises considerably beyond the age of 60, reaching 14.8%. A notable rise 
in the count of deceased patients was found in the patient data. Ac-
cording to the findings of this experiment, people in the age group 
(45–64) had 123 more odds to die as well as 436 times more chance in 
the age group 65 years old than patients who were<18 years old. It can 
be noticed that younger people had a higher chance to survive the dis-
ease. This is in line with previous research that has established age as a 
significant factor for cases that died because of Covid-19, particularly for 
individuals between the age of 45 and 64, and especially those over the 
age of 65 [40,41]. 

Other reports have also noted that patients in ICUs tend to be older 
than those who are not, and in that case fatality rates are higher among 
older individuals [3,42–44]. As a result, the risk of death is significantly 
increased in patients who are older than compared to those who are 
younger. 

The study discovered that fever, cough, and sputum were predomi-
nant symptoms among Covid-19 individuals, mostly those who were 
critically ill and eventually died. It is noteworthy that cough and fever 
are also commonly detected as indicators in patients with severe acute 
respiratory syndrome (SARS) and Middle East respiratory syndrome 
(MERS), which are impacted by coronaviruses. Fever is recognized as a 
principal symptom of cytokine storms, a condition characterized by an 
excessive immune response and inflammation resulting from high 

cytokine concentrations. Moreover, Upon admission, vital signs of 
severely ill patients indicated elevated body temperature and respira-
tory rate, as well as reduced SpO2 levels. Throughout the outbreak, 
glucocorticoids have been placed to manage SpO2 levels below 90%, 
and the oxygenation saturation index is associated with both ARDS 
severity and increased mortality. Our result indicated that SpO2 is 
associated with a 20% (1 – 0.80 = 0.20) reduction in the relative risk of 
dying. Thus, a 1-unit increase in the corresponding oxygen level of pa-
tients admitted to the hospital due to the disease is associated with a 
lower risk of dying due to Covid-19. 

However, the severity of Covid-19 patients was found to be unaf-
fected by gender in our study. While initial reports from other countries 
suggested a higher proportion of men experiencing severe cases of 
Covid-19, more recent studies have shown that similar proportions of 
men and women are being admitted to ICUs [3,42–44], indicating that 
any gender differences may have diminished with the increase in inci-
dence. It’s possible that earlier reports included a higher number of 
males due to their higher occupational risk of infection in crowded 
places like markets and congregations [43]. Our study discovered that 
patients who passed away due to Covid-19 had more pronounced 
damage to white blood cells and immune cells, and the odds ratio was 
estimated to be 0.37; for every 1 increase in white blood cell count, an 
infected Covid-19 person had 63% chance to survive than not with a 
95% CI of (0 and 0). Covid-19 may lead to reduced levels of T lym-
phocytes, including CD4 + T and CD8 + T cells, which can result in 
decreased production of interferon-gamma (IFN-γ), potentially 
contributing to disease severity [45]. 

Additionally, while a more intense inflammatory response was 

Table 9 
Confusion matrix result of Bayesian neural network and classic neural network.   

Bayesian Neural Network Neural Network  

Recovered Died Recovered Died 

Recovered 98 13 93 16 
Died 16 62 19 60 
AUC 0.8466 0.8138 
P-Value 0.001 0.0382 
95% CI (0.8326, 0.8521) (0.8025, 0.8203) 
Sensitivity 85.96% 83.04% 
Specificity 82.67% 78.95%  

Fig. 7. Relative Importance of Inputs by Analyzing Weight Matrix.  

Table 10 
Confusion matrix outputs of computed models.  

Classifier AUC F1 Precision Recall 

ANN  0.8138  0.8416  0.8532  0.8304 
ANN with MCMC  0.8466  0.8711  0.8829  0.8596 
Logistic Regression (MLE)  0.8095  0.8378  0.8455  0.8304 
Logistic Regression (MCMC)  0.8307  0.8559  0.8559  0.8559  
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indicated by much higher levels of inflammatory markers, such as C- 
reactive protein [46,47], CRP was also one of the attributes and it was 
associated with a 2.72% rising chance to die. Although the effect size 
was small, it was statistically significant with a p-value < 0.001. D-dimer 
is a protein fragment that is produced in the blood after the breakdown 
of a blood clot through fibrinolysis [48]. In healthy individuals, D-dimer 
is typically not detectable in the bloodstream, except in cases where 
blood clots are formed and broken down. This makes a D-dimer serum 
test useful for ruling out thrombotic episodes and aiding in the early 
diagnosis of various thromboembolic conditions, including, pulmonary 
embolism, deep vein thrombosis, and disseminated intravascular coag-
ulation [49,50]. 

Initially, it was proposed that a contact person to Covid-19 might 
develop a hypercoagulable state, which was supported by the formation 
of thromboembolisms observed in pathological studies from autopsies or 
biopsies [51,52]. Consequently, several researchers linked the increase 
in D-dimer levels to this hypercoagulable state in Covid-19 patients 
[53,54]. However, some researchers argue that elevated D-dimer levels 
may be associated with the inflammatory response rather than the 
thromboembolic condition in Covid-19 infected cases [55]. The exact 
mechanisms behind the elevated D-dimer levels in Covid-19 individuals 
are not yet fully understood, and further research is needed to clarify the 
underlying processes. 

5. Limitation 

Several limitations should be considered in this study. Firstly, there 
was a considerable amount of missing data in the laboratory and 
radiological records, which impeded their inclusion in the analysis. 
Secondly, the identified predictive factors may have been confounded 
by unmeasured variables, such as occupation, length of hospital stay, 
and pregnancy status. It is possible that medical staff and pregnant 
women had different disease severity profiles. Additionally, the absence 
of reported medications may have impacted the disease status of the 
infected cases and could potentially lead to different conclusions. 

6. Conclusion 

This research contributes by utilizing neural network approaches to 
learn complicated dependencies from the data as well as a Bayesian 
paradigm to associate the uncertainty in the predictions. Thus, our 
method has the potential to produce a model that can make accurate 
forecasts regarding infectious diseases and contribute to the mitigation 
of the negative effects those have diseases. To accomplish this, it is 
essential to keep the following information about the prior distributions 
in mind, as it will be utilized to estimate the parameters of the model. 
Even though it was assumed that these prior distributions did not pro-
vide any useful information, it is nevertheless recommended to carry out 
a sensitivity analysis to determine level of effectiveness. 

Each parameter of the model has a normal prior distribution mean, 
and in addition to this, a value ranging from 102 to 106 was appended to 
the variance of the normal distributions. A normal prior with a variance 
of 106 is sufficiently non-informative and generally functions well with 
our dataset. This conclusion was reached as a result of the findings that 
the posterior distributions for the regression parameters differed only 
slightly from one another. This suggests that the outcomes produced by 
our model were reliable across a broad spectrum of prior distributions. 
Moreover, Bayesian neural network performed better than the other 
three approaches in terms of accuracy and stability as well as 
convergence. 

7. Recommendation 

The implementation of this concept is expected to make it simpler for 
government agencies to keep an eye out for any contagious diseases. The 
findings of the model can be utilized in the formulation of public health 
policy, such as the administration of immunizations or the imple-
mentation of preventative measures. Another suggestion is to obtain 
more data with much more variables such as, x-ray, MRI, medications 
taken by the patients. 
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