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Abstract

Drying plays a crucial role in preserving the quality of agricultural products. Neverthe-

less, suboptimal conditions in drying systems have an adverse effect on drying charac-

teristics and energy efficiency. Machine learning approaches are innovative and reliable

that have been successfully used to solve such challenges and achieve optimization in

drying processes. In this study, five machine learning approaches (multilayer perceptron

[MLP], gaussian processes [GP], support vector regression [SVR], k-nearest neighbors

[kN], and random forest [RF]) were used to estimate moisture content and moisture

ratio of apricot in five various dryers (convective [CV], microwave [MW], infrared [IR],

microwave-convective [MW-CV], and infrared-convective [IR-CV]). Also, the values of

specific energy consumption (SEC) and effective moisture diffusivity (Deff) were calcu-

lated in these dryers. Accordingly, the best result of the Deff (3.14 � 10�10 m2/s) and

the minimum value of the drying time (130 min) and SEC (18.67 MJ/kg) were obtained

using MW-CV hybrid dryer. While the lowest values of Deff (2.09 � 10�11 m2/s) and

highest drying time (18.5 h) and SEC (209.34 MJ/kg) were detected in CV dryer at

50�C. The best correlation coefficients (R) for the estimation of moisture content were

gained using RF technique for k-fold cross validation and train-test split with the values

of 0.9908 and 0.9912, respectively. Moreover, moisture ratio results showed that the

MLP achieved the highest R value over 0.9985 for both validation methodologies. In

the discrimination of the drying methods, the MLP had the greatest accuracy as

82.00% and 86.00% for k-fold cross validation and train-test split, respectively. The

results showed that the RF and ML models could potentially be used for estimation and

discrimination for drying applications.

Practical Applications

Recently, there has been an increased interest in healthy food choices such as food-

stuffs, snacks, and dried products. This trend has captured the attention of both

Abbreviations: ANN, artificial neural networks; AOAC, Association of Official Agricultural Chemists; CV, convective; d.b., dry basis; Deff, effective moisture diffusivity; DT, decision tree; EMD,

effective moisture diffusion; FN, false negative; FP, false positive; GP, Gaussian processes; IR, infrared; IR-CV, infrared-convective; IR-CV-R, infrared-convective-rotary; KNN, k-nearest

neighbors; MAE, mean absolute error; MC, moisture content; MCC, Matthew's correlation coefficient; MJ, megajoule; ML, machine learning; MLP, multilayer perceptron; MR, moisture ratio;

MW, microwave; MW-CV, microwave-convective; MW-CV-R, microwave-convective-rotary; PRC, precision–recall; PUK, Pearson VII Kernel function; R, correlation coefficient; R2, determination

coefficient; RAE, relative absolute error; RF, random forest; RMSE, root mean square error; ROC, receiver operating characteristic; RRSE, root relative squared error; SEC, specific energy

consumption; SVR, support vector regression; TN, true negative; TP, true positive.

Received: 4 August 2023 Revised: 21 September 2023 Accepted: 29 September 2023

DOI: 10.1111/jfpe.14475

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium,

provided the original work is properly cited.

© 2023 The Authors. Journal of Food Process Engineering published by Wiley Periodicals LLC.

J Food Process Eng. 2023;46:e14475. wileyonlinelibrary.com/journal/jfpe 1 of 18

https://doi.org/10.1111/jfpe.14475

https://orcid.org/0000-0001-5285-2211
https://orcid.org/0000-0001-8524-8272
https://orcid.org/0000-0002-1690-1714
https://orcid.org/0000-0002-9999-7845
https://orcid.org/0000-0003-1804-7344
mailto:necati.cetin@ankara.edu.tr
http://creativecommons.org/licenses/by/4.0/
http://wileyonlinelibrary.com/journal/jfpe
https://doi.org/10.1111/jfpe.14475


dietitians and conscious consumers. Apricots are a prime example of a valuable dried

product that can be dry in various conditions. Machine learning techniques can be

used for rapid and non-destructive determination of drying characteristics and such

techniques yield objective and accurate results. Present findings revealed that tex-

ture machine learning models could be used as an effective and reliable discrimina-

tion tool for dried products.

K E YWORD S

apricot, drying, estimation, machine learning, moisture

1 | INTRODUCTION

Evaluation of a drying device from the point view of design, energy,

and storage properties as well as material transfer for agriculture

products passes through the drying kinetics evaluation (Rodríguez

et al., 2014). Several numerical methods like mathematical modeling

and response surface methodology have managed to resolve the com-

plexity of nonlinear behavior up to a point. To overcome the draw-

backs of these methods, some different techniques like artificial

neural network (ANN), fuzzy logic, and logistic regression have been

considered (Abbasi et al., 2010). Some of these techniques are

k-nearest neighbor (k-NN), support vector machine (SVM), Gaussian

processes (GP), random forest (RF), and multilayer perceptron (MLP)

(Rodríguez et al., 2014). These algorithms are a potential tool for simu-

lating drying process variables and tackle the complexity of the non-

linear systems (Bahmani et al., 2016; Guiné et al., 2014).

Mathematical modeling is a very complex and time-consuming proce-

dure for estimating mass characteristics based on input effects. For

this reason, machine learning technique are preferred over mathemat-

ical modeling due to the logical precision and low computation times

in the drying process (Afkhamipour et al., 2018).

Machine learning algorithms provide a substitute method for solv-

ing problems and their use is increasing day by day. The ability to tune

multinomial nonlinear functions was the main reason for successful

use of these algorithms (Golpour et al., 2018; Silva et al., 2015). These

algorithms have been often used to imitate and modeling the behavior

of agriculture products (Golpour et al., 2020). In addition, ML method

offers some benefits over traditional statistical and mathematical pro-

cedures. In better word, they do not require the estimated values be

placed around the mean and thus imitate actual values variability

(Jahanbakhshi & Salehi, 2019; Movagharnejad & Nikzad, 2007;

Shekarchizadeh et al., 2014).

The main key variables in the drying process are moisture ratio,

moisture content, and drying rate. A few investigations have consid-

ered the drying characteristics estimation using machine learning

approaches including for pineapple cubes (Meerasri &

Sothornvit, 2022), apple slices (Sa�glam & Çetin, 2022), pomelo fruit

(Kırbaş et al., 2019), mushroom (Tarafdar et al., 2019), cocoyam slices

(Onu et al., 2022), apricot slices (Satorabi et al., 2021), orange slices

(Çetin, 2022a), orange-fleshed sweet potato (Okonkwo et al., 2022),

banana (Trivedi et al., 2023), cantaloupe (Zadhossein et al., 2023). In

addition, there are rare discrimination research about drying of agri-

culture product in the past studies such as dried strawberry (Przybył

et al., 2020), freeze-dried beetroot (Ropelewska & Wrzodak, 2022),

dried tarhana (Kurtulmuş et al., 2014), and dried garlic (Makarichian

et al., 2021). These studies disclose that there are limited available

research about the modeling machine learning based of drying param-

eters particularly moisture content and moisture ratio estimation of

apricot. Moreover, there is no study on discrimination of the drying

methods according to such drying characteristics, to the best of found

knowledge. The innovative aspect of this study is related to the

modeling of moisture content and moisture content models in apricot

drying processes with five different machine algorithms instead of

conventional mathematical methods and comparative analysis of the

performance results obtained. In addition, another difference in the

study is that three different machine learning algorithms perform clas-

sification according to apricot drying conditions. The current investi-

gation is the first work to estimate and analyze the moisture content

and moisture ratio and the drying methods comparing using above-

mentioned drying characteristics.

2 | MATERIALS AND METHODS

2.1 | Sample preparation

The present research was performed in 2022 in the Department of

Biosystem Engineering, at Mohaghegh Ardabili University in Iran. The

apricot samples were prepared from a local garden (Sardasht, Iran) and

were kept in a refrigerator (3�C) until the end of the tests. About

60 min before the start of each test, the samples were adapted to

ambient temperature to balance the temperature by removing from

the refrigerator. The preliminary moisture content of apricot samples

was measured based on AOAC standard (AOAC, 1990). The process

continued until the weight of the samples was fixed. The samples

were removed from the oven and their weight was immediately mea-

sured and weighed, then the initial moisture content of apricot was

obtained on a dry basis according to Equation (1) (Kayran &

Doymaz, 2021). A scale was used to record the weight of the samples

with a resolution of 0.001 g (AND model GF-6000, Japan). The pri-

mary moisture content was 4.95 ± 0.72 kg water per kg on dry basis

(d.b.) (Shimpy & Kumar, 2023).
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MCd:b ¼W0�Wd

Wd
�100 ð1Þ

where W0 stands for the initial weight, Wd refers for the weight of the

dried product, and MCd.b. refers for the moisture content percentage

on d.b.

2.2 | Drying technologies

Drying processes were done in a hybrid dryer (microwave-convective-

rotary [MW-CV-R]) and (infrared-convective-rotary [IR-CV-R]) in the

laboratory of the above-mentioned department (the rotary part was

removed to perform the tests of this study) (Kaveh & Abbaspour-

Gilandeh, 2019; Kaveh & Abbaspour-Gilandeh, 2022). Hybrid dryers

(MW-HA-R and IR-HA-R) can use convection (CV), microwave (MW),

and infrared (IR) methods separately and combined together (MW-CV

and IR-CV). Three thermal elements (4.8 kW) were used to measure

air temperature in these dryers. Hot air was blown into the chamber

by a blower (1 hp/3000 rpm). The temperature of the air blown was

controlled by a thermostat. The air velocity for all tests of the CV

dryer was determined 0.5 m/s individually and in combination with

MW and IR. In addition, four IR lamps (1000 W) were used inside the

dryer. A 15 cm distance was chosen between the IR-lamps and

the apricot sample. Two magnetrons (with a total power of 900 W)

were used in the MW dryer and MW-CV combination. All required

drying characteristics such as the sample mass, the inlet air tempera-

ture (K-type sensor throughout the dryer), the sample temperature,

the ambient temperature, the ambient humidity (thermometer, Lutron

TM-903, Taiwan), air velocity (anemometer, Lutron AM-4216,

Taiwan), MW power, and IR power were continuously recorded on a

personal computer equipped with data collection software. Different

air temperature, microwave power, and infrared power levels for all

employed dryers are presented in Table 1. The apricot samples were

sliced in 3 mm by a fruit slicer for drying experiments. The amount of

sample for drying tests for all dryers was about 80 ± 3 g and all the

tests were done in three repetitions.

2.3 | Moisture ratio

According to the experimental data obtained from the tests and moni-

toring of the drying process, the moisture ratio parameter (without

dimension during drying) of the apricot samples was obtained from

Equation (2) (Tripathy & Srivastav, 2023):

MR¼ Mt�Me

MO�Me
ð2Þ

where Mt is the moisture content of the apricot sample at any

moment (d.b), Me stands for the equilibrium moisture content of the

apricot sample (d.b), and M0 refers to the primary moisture content of

the sample (d.b). The amount of Me compared to the values M0 and

Mt are very small if the drying time is prolonged (Polat & Izli, 2022).

Therefore, the equation of MR during drying can be written as

Equation (3), and there is no need to measure the equilibrium mois-

ture to calculate the MR (Kayran & Doymaz, 2019).

MR¼ Mt

MO
ð3Þ

2.4 | Effective moisture diffusivity

The Deff is a key feature for demonstrating the rate of moisture flow

inside the sample, which indicates the difficulty of passing moisture

from the inner parts of the sample to the outside. Fick's second law is

explicated as the following equation. This law assumes the 1-D flow

of moisture and the constant effective moisture penetration coeffi-

cient (Bao et al., 2023).

∂M
∂t

¼Deff
∂2M
∂x2

ð4Þ

The general solution of Fick's second law in Cartesian coordinates

is expressed by Crank for a blade-shaped body as follows (Souza

et al., 2022):

MR¼Mt�Me

Mo�Me
¼ 8
π2

X∞

n¼1

1
2nþ1ð Þ exp � 2nþ1ð Þ2Deff

4L2
π2t

� �
ð5Þ

where t refers to the drying time (s), Deff refers to the effective mois-

ture diffusivity (m2/s), and L stands for the half thickness of the cut

pieces of apricot (m2). If the drying time is prolonged, Equation (5) can

be shown as follow and just the first term of the equation be consid-

ered (Chikpah et al., 2022):

MR¼ 8
π2

exp
�Deffπ2

4L2
t

� �
ð6Þ

Now, the Deff can be obtained from the slope method. Accord-

ingly, the logarithm value of the moisture ratio obtained of the dried

TABLE 1 Stages of drying processes
for drying apricot.

Process CV IR MW IR-CV MW-CV

Air temperature (�C) 50 and 70 — — 60 60

Infrared power (W) — 500 and 750 — 500 —

Microwave power — — 360 and 630 — 540

Abbreviations: CV, convective; IR, infrared; MW, microwave.
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samples against time gives a linear equation of K slope (Namjoo

et al., 2022).

ln MRð Þ¼ ln
8
π2

��Deffπ2

4L2
t ð7Þ

K¼ Deffπ2

4L2

� �
ð8Þ

2.5 | Specific energy consumption

Specific energy consumption (SEC) during the drying of apricot sam-

ples using convective (ECV), microwave (EMW), and infrared (EIR)

methods were obtained from Equations (9)–(11), respectively as fol-

lowing (Kaveh et al., 2023; Motevali et al., 2011):

ECV ¼Av ρa CaΔt t
Mw

ð9Þ

EMW ¼PMW t
Mw

ð10Þ

EIR ¼ K t
Mw

ð11Þ

where ECV, EMW, and EIR are the SEC in convective, microwave and

infrared dryer (MJ/kg), respectively, A is the apricot sample tray area

(m2), ρa is the air density (kg/m3), ΔT is the temperature difference

(�C), ν refers to the air flow velocity (m/s), Ca refers to the air specific

heat (kJ/kg�C), t refers to the period of drying (h), PMW and K refer to

the microwave and infrared power, respectively.

Energy consumption in microwave-convective (EMW-CV) and

infrared-convective (EIR-CV) methods was obtained from the following

Equations (12) and (13), respectively (EL-Mesery & El-khawaga, 2022).

EMW�CV ¼ eq9þeq10 ð12Þ

EIR�CV ¼ eq9þeq11 ð13Þ

where EMW�CV and EIR�CV are the SEC in microwave-convective and

infrared-convective dryers (MJ/kg), respectively.

2.6 | Machine learning approaches

In the present research, a modeling and discrimination evaluation of

developed algorithms were performed by the Weka® v3.8 software

(Hall et al., 2009). Models were carried out on a personal computer. In

this study, five different approaches (MLP, GP, support vector regres-

sion (SVR), KNN, and RF) were employed for parameter estimation.

These algorithms provide very successful results for drying character-

istics that occur in non-linear complex drying processes. In some stud-

ies, similar models were developed and performed well in drying

processes (Çetin, 2022a; Sa�glam & Çetin, 2022). Four characteristics

including drying methods, drying time, moisture content (dry basis),

and drying rate were used as the inputs for estimation the moisture

ratio, and three characteristics (drying method, drying time, and drying

rate) were employed as input for estimation the moisture content.

The discrimination of drying methods by three machine learning

algorithms (MLP, RF, and KNN) were based on the drying characteris-

tics as drying time, MC (dry basis), MR, drying rate, and ln (MR). In the

present study, a number of 271 values were employed for each char-

acteristic and the total sample size was 1626.

2.6.1 | Multilayer perceptron

The strength ANNs is in imitating the human brain behavior. ANN is a

system including relationships between elements similar to biological

neurons, and each of which has its specific weight (Loan et al., 2023).

One of the widely used structures is MLP which is used for various

aims such as classification and regression (Daliran et al., 2023). Three

layers of input, hidden and output form MLPs structure. In addition,

the data in this neural network flows from the input side to the output

side, which is called feedforward neural network. The type of MLP

training algorithm is backward propagation of errors which has been

designed to analyze the weighted sum of the activation function

(Çetin et al., 2021; Malakar et al., 2023). In the MLP, the number of

neurons in the hidden layer is generally determined using a trial-

and-error procedure (Bateni et al., 2007). In the MLP, it is recom-

mended to choose the number of neurons in the hidden layer more

than two times the input parameters (Varol et al., 2022). These criteria

were considered when creating ANN architectures and the structures

that give the most successful results at the end of the trials were pre-

ferred. For the development of ANN structure for moisture content,

the structures of developed ANN were 3-3-1, 3-6-1, and 3-9-1,

respectively. The three structures for estimation of moisture ratio

were 4-4-1, 4-8-1, and 4-12-1, respectively. For all MLP structures,

the number of epochs was 500, learning ratio was 0.3, the momentum

coefficient was 0.2, and the Sigmoid was chosen as the activation

function. Figure 1 depicts the applied MLP model structure. Further-

more, a specific MLP structure was developed for moisture ratio and

moisture content.

2.6.2 | Gaussian processes

Gaussian process is a collection of random variables that set a joint

Gaussian distribution (Rasmussen & Williams, 2006). In the GP model,

the Bayesian Gaussian method as infinite dimensional parameter was

employed for non-linear regression functions. It also needs defining a

kernel function with a noise assessing capability or goodness of fit. In

addition, to increase the performance of the developed model, the

normalized and standardized data are used as the input values of the

training step (Çetin, 2022b). The importance of this process is due to

the fact all the employed features are obtained from the normal distri-

bution, the normal distribution of error, variance, and covariance

(Rasmussen & Williams, 2006). Current research, has used Pearson VII

as the kernel function of the GP.
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2.6.3 | Support vector regression

Support vector regression is well known kind of machine learning

frequently have been used for regression problems. SVR has core-

oriented functionality and the features of kernel used have a signifi-

cant impact on optimal development (Zhang et al., 2022). The results

of using this technique on nonlinear problems have been very impres-

sive. In SVR, the input variables are nonlinearly mapped in a feature

space using kernel transformation function. To implement the process,

the inputs and outputs values relationship is linearized in the feature

space (Luka et al., 2022). Equation (14) illustrates the general state of

SVR equation:

y¼wΦ xð Þþb Φ :Rn !RNð Þ ð14Þ

x � Rn refers to the input value, y � RN refers to the output, b refers

to the bias term, w � RN refers to the coefficient factor, and Φ refers

to the mapping function whose input is transformed into a high-

dimensional vector. As mentioned in the last subsection, the selected

SVR was Pearson VII (PUK) as kernel function.

2.6.4 | k-Nearest neighbor

Another powerful algorithm which has been used for different classifi-

cation purposes especially in agriculture domain is k-NN. This algorithm

the input values are categorized into some clusters and subsequently

they will be combined and converted into new clusters. To calculate

the distance, the well-known method of the Euclidean distance formula

was used (Peter et al., 2021; Romero et al., 2013). In algorithm k-NN,

there is no a training model for the structure, therefore, the perfor-

mance of the system increases by increasing the number of learning

samples (Maxwell et al., 2018). In addition, Euclidean distance was

employed for searching process in k-NN algorithm, and k values for

estimation and discrimination were 1, 3, and 5; and 3, respectively.

2.6.5 | Random forest

To build the RF classifier, first several decision trees are developed

with self-learning examples with the actual training input values to

develop each tree in regression. Afterwards, all the decision trees are

F IGURE 1 Representative multilayer
perceptron model structures for moisture
ratio (a) and moisture content (b).

KAVEH ET AL. 5 of 18
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employed to estimate a specific model based on the convergent esti-

mation model of all the models. Based on the fact, each decision tree

is a unique model in RF, this convergent estimation is an instance of

characteristic estimation (Breiman, 2001). Contrary to DT, the allotted

class of data groups is determined by the most frequent of the groups

of trees developed by RF (Berhane et al., 2018). Another advantage of

this method is that the self-learning and ensemble scheme controls

the overfitting weakness by DT, there is no pruning phase in RF (Ali

et al., 2012). Moreover, RF could provide a more accurate model and

has higher adaptability data fluctuations (Breiman, 2001; Rodriguez-

Galiano et al., 2012).

2.7 | Validation methodology

The data was divided into two parts train set group (70%) and test

part data (30%). In addition, k-fold cross validation approach was

employed for validation phase (Sa�glam & Çetin, 2022). Similar trend

was followed for the discrimination. The performance of the models

was assessed using a validation set in order to generate sufficient data

for the training set. For this reason, 10-fold cross-validation was

included to adjust the model hyperparameters. Generally, the greater

the number of iterations, the greater the performance accuracy. How-

ever, the accuracy of network recognition does not improve and occa-

sionally even declines after a certain number of epochs (Ashtiani

et al., 2021; Wu et al., 2020). For all the models, k value was 10. The

number of iterations for the training and testing procedures was 10.

In each iteration, one sub-set was employed for testing and the rest

sub-sets (9) were employed for training. Each k sub-samples were

used once for testing. Afterwards, the overall error of the model was

obtained using the average errors obtained in each iteration

(Çetin, 2022b). Finally, the operational accuracy of the classifiers was

evaluated by using specified performance parameters.

2.8 | Evaluation of model performances

Some statistical criteria such as correlation coefficient (R), mean abso-

lute error (MAE), root mean square error (RMSE), relative absolute

error (RAE), and root relative squared error (RRSE) were employed to

evaluate the performance of the models (Equations 15–19)

(Parker, 2001). Equations (20)–(23) were used to calculate the param-

eters of true positive (TP) rate, precision, F-measure, Matthew's corre-

lation coefficient (MCC), receiver operating characteristic (ROC) area,

and Precision–Recall (PRC) area for discrimination were calculated

using (Ropelewska & Szwejda-Grzybowska, 2021). The MCC produces

a high value only if the classifier correctly estimated most of the posi-

tive data instances and most of the negative data instances, and if

most of its positive estimation and most of its negative estimations

are correct (worst value = �1; best value = +1) (Chicco et al., 2021).

R¼ 1
n�1

Xn
i¼1

Mi�MÞ
:

Ei� EÞ
:��

SM SE
ð15Þ

MAE¼
Xn
i¼1

j Ei�Mi j
n

ð16Þ

RMSE¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn
i¼1

Ei�Mið Þ2

n

vuuut
ð17Þ

RAE¼

Pn
i¼1

j Ei�Mi j
Pn
i¼1

jM
:

�Mi j
�100 ð18Þ

RRSE¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

Ei�Mið Þ2

Pn
i¼1

M
:

�Mi

� �2

vuuuuut �100 ð19Þ

Ac ¼ TPþTN
TPþFPþTNþFN

�100 ð20Þ

P¼ TP
TPþFP

ð21Þ

F�measure¼2�P�Se
PþSe

ð22Þ

MCC¼ TP�TN�FP�FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TPþFPð Þ� TPþFNð Þ� TNþFPð Þ� TNþFNð Þp ð23Þ

where n stands for number of data, Mi stands for recorded target

value, Ei refers for estimated target value, Ṁ refers for average of

recorded target values, Ė stands for average of estimated target

values, SE refers for total estimated target values, and SM stands for

total recorded target values. Herein, evaluation of the estimation

model was done by correlation coefficients (R) according to the basics

demonstrated by Colton (1974) which explains if the correlation coef-

ficients were between 0–0.25, 0.25–0.50, 0.50–0.75, and 0.75–1 it

indicates there is no-correlation, moderate correlation, high correla-

tion, and perfect correlation, respectively. The values of TP, FP, TN,

and FN refers to the number of TPs, false positive, true negatives, and

false negatives, respectively. The correlation coefficient and accuracy

were evaluated by the goodness of the estimation (Colton, 1974). The

accuracy of between 0–0.25, 0.25–0.50, 0.50–0.75, and 0.75–1.0 indi-

cate “little – no relationship”, “fair relationship”, “moderate – good rela-

tionship”, and “very good – excellent relationship”, respectively.
ROC charts can picture the relationship of the correct estimations

of the positive and negative values. This curve graphically shows the

rates of TP against the false positive, as its threshold of discrimination

is changed. In fact, a model with a particular relationship between TP

rate and the false positive rate displays each point on the curve. To

better presentation of the information of the ROC curve the values

need be assembled into a sole output value in order to make a better

comparison between the response of multiple models with statistical

criteria (Stegmayer et al., 2013). The total area under the ROC curve

is interpreted as an indicator of the system's performance and to
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make easy comparison between classifiers it was between 0 and

1 (Bradley, 1997). The values close to 1 indicate that a grade higher

than any non-class sample has been assigned to most of the positive

class samples, which shows there is a threshold that ideally

distinguishes.

3 | RESULTS AND DISCUSSIONS

3.1 | Moisture content and moisture ratio

Figure 2 describes the changes in the moisture content (A) and the

moisture ratio (B) for various methods of drying apricot samples. As

can be seen, in all the methods, with the passage of time, the moisture

content and moisture ratio decreased continuously. When micro-

waves were used either singly or in combination with other methods,

it resulted in the most effect on the drying kinetics. In individual

methods like convective and infrared, heat is transferred from the

outer surface of the product through conduction, and over time, heat

transfer slows down and causes a noteworthy raise in drying time due

to the phenomenon of surface hardening and shrinkage (Minaei

et al., 2012). Moreover, the maximum amount of moisture removal

was obtained for microwave (under different powers) and MW-CV

methods. Because in these methods, the airflow speed for apricot

samples is due to the internal (volumetric) heat emitted by micro-

waves. It causes a faster sample dehydration, and as a result, the mois-

ture reaches minimum value quickly (Zhu et al., 2022). Similar findings

were found in published studies (EL-Mesery & El-khawaga, 2022;

Łechtanska et al., 2015; Roknul Azam et al., 2019; Witrowa-Rajchert &

Rząca, 2009).

3.2 | Effective moisture diffusivity

Table 2 exhibits the results of ANOVA analysis of different dryers

under different conditions for two variables, Deff and SEC. For each

parameter, sum of squares, mean square, F, and significance (Sig.)

were calculated. While the F value was 49.769 for Deff, it was

460.255 for SEC. Herein, the power of variation of SEC between

applications was revealed.

Based on Figure 3, the lowest Deff was observed in the CV tech-

nique at the temperature of 50�C. From the Deff data displayed in

Figure 3, it could be found that the apricot sample dried under various

drying techniques (CV, IR, MW, MW-CV, and IR-CV) which shows a
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F IGURE 2 Moisture content (a) and
moisture ratio (b) versus drying time of
apricot sample in different drying
methods.
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certain trend: MW-CV > MW (630 W) > MW (360 W) > IR-CV > IR

(750 W) > CV (70�C) > IR (500 W) > CV (50�C). Since there is a direct

relationship between the Deff and temperature, on the other hand, the

energy of CV to remove moisture is low compared to radiation

methods. Therefore, in this method the Deff is at its lowest value com-

pared to other techniques. This finding was in agreement with the

result of the study conducted by Behera and Sutar (2018). In the case

of the IR method and IR-CV combination, the amount of Deff depends

on the power of the infrared lamp leading faster heating of the sam-

ples (EL-Mesery et al., 2022). Although the Deff in these methods was

higher than the CV method, but it was lower compared to the

methods in which microwave energy is used for drying as observed by

Bozkir et al. (2021) and Zhu et al. (2022). It can also be seen that the

methods in which MW energy was used either individually or in com-

bination with the HA method (MW-CV) for drying, a significant

increase in the Deff was observed. Due to the MW power creates

internal steam pressure creates a porous structure and greater perme-

ability to steam and finally raises the Deff due to the fast heating of

apricot samples (Çetin, 2022c). The highest value of the Deff was

obtained in the MW-CV dryer. Similar findings were reported by Çetin

(2022c), Simsek and Süfer (2021), and Zhu et al. (2022).

3.3 | Specific energy consumption

According to the results shown in Figure 4, it can be stated that there

is no significant difference in the final energy consumption between

the 360 W microwave method and the infrared-convective method.

But the rest of the drying methods have a significant difference in

terms of energy consumption at a statistical level of 5%. In addition,

according to Figure 4, the most energy consumption was recorded in

the single CV method at a temperature of 50�C. More specifically,

in this method, a large share of the energy used for drying was wasted

Also, low temperature at drying processes will increase the drying

time and consequently increase the energy consumption (Motevali

et al., 2014). Similar findings were reported previously (EL-Mesery &

El-khawaga, 2022; Łechtanska et al., 2015).

In the infrared method (single and combined with CV), all the

energy emitted by the lamps is absorbed by the sample and causes it

to heat up causing the product lose moisture faster than the CV

method and require less energy (Onwude et al., 2018). Similar out-

comes have previously obtained by (Jeevarathinam et al., 2022; Ye

et al., 2021).

The lowest energy consumption is recorded for the methods that

use microwave power. One of the powerfulness of this method is the

high thermal conductivity compared to other methods (convective and

infrared power) causing drying time reduction and consequently decreas-

ing energy consumption (Ren et al., 2022). This is due to the vibration of

water molecules due to the absorption of microwaves, which covers the

entire samples of the product. Motevali and Tabatabaei (2017) per-

formed drying dog-rose with different methods (CV, IR, IR-CV, hybrid

photovoltaic/thermal, MW, MW-CV, and vacuum) and in addition, Łech-

tanska et al. (2015) conducted a study on drying green pepper with using

several methods (CV, MW-CV, MW-CV + IRpretreatment, and CV +

MWpretreatment + IRpretreatment, CV + IRpretreatment dryers) and disclosed

that the minimum energy consumption value was obtained for micro-

wave dryers similarly to the findings of the present investigation. This

result is compatible with the findings of EL-Mesery and El-khawaga

(2022), and Motevali et al. (2020).

3.4 | Estimation of drying characteristics

3.4.1 | Moisture content

In the estimation of moisture content, several parameters were

employed including drying method, drying time, drying rate, and mois-

ture ratio.

TABLE 2 ANOVA analysis results of
the Deff and specific energy consumption
at different drying methods.

Parameter Sum of squares Mean square F Sig.

Deff 1.569E-19 2.241E-20 49.769 0.000

Specific energy consumption 95395.125 13627.875 460.255 0.000
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F IGURE 3 Results effects of the
different dryers for the Deff at different
levels.
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The performances of the models suggested for estimation of

moisture content of apricot are illustrated in Table 3. The best correla-

tion coefficient (0.9908 and 0.9912) and lowest RMSE (0.2372 and

0.2678) were obtained for RF algorithm using the k-fold cross valida-

tion and train-test split method. RF model was followed by the SVR

with an R of 0.9733 and 0.9648. The lowest R values were found by

GP and MLP (3-6-1) algorithms with the values of 0.8949 for k-fold

and 0.8895 for train-test split. For both methods, the lowest MAE

values were obtained from SVR (0.1022 and 0.1366) algorithm. Fur-

thermore, the highest MAE was determined as 0.5425 from GP for
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)F IGURE 4 Specific energy

consumption during the different drying
of apricots.

TABLE 3 Performance outcomes of
machine learning algorithms in estimation
of moisture content.

k-fold cross validation

R MAE RMSE RAE (%) RRSE (%)Algorithms

MLP (3-3-1) 0.9456 0.3083 0.5225 21.90 33.03

MLP (3-6-1) 0.9622 0.2646 0.4299 18.80 27.18

MLP (3-9-1) 0.9592 0.2840 0.4482 20.18 28.33

GP 0.8949 0.5425 0.7162 38.54 45.27

SVR 0.9733 0.1022 0.3673 7.26 23.22

1-NN 0.9515 0.2231 0.4902 15.85 30.98

3-NN 0.9489 0.2014 0.5030 14.31 31.80

5-NN 0.9460 0.2293 0.5184 16.29 32.77

RF 0.9908 0.1585 0.2372 11.26 14.99

Train-test split

R MAE RMSE RAE (%) RRSE (%)Algorithms

MLP (3-3-1) 0.9317 0.4781 0.6921 32.49 41.75

MLP (3-6-1) 0.8895 0.6684 0.8257 45.41 49.81

MLP (3-9-1) 0.9252 0.5068 0.6930 34.44 41.80

GP 0.8924 0.5759 0.7810 39.13 47.11

SVR 0.9648 0.1366 0.4465 9.28 26.93

1-NN 0.9370 0.2533 0.5982 17.21 36.09

3-NN 0.9228 0.2684 0.6461 18.23 38.97

5-NN 0.9269 0.2871 0.6260 19.51 37.76

RF 0.9912 0.1824 0.2678 12.39 16.15

Note: MLP-type ANN parameters; η: learning ratio: 0.3; α: momentum coefficient: 0.2; NoE: number of

epochs: 500; activation function: sigmoid. The number of inputs is 4, the number of outputs is 1, and the

number of neurons in the hidden layers is 4, 8, and 12, respectively.

Abbreviations: AN, artificial neural network; GP, Gaussian processes; KNN, k-nearest neighbors; MAE,

mean absolute error; MLP, multilayer perceptron; RAE, relative absolute error; RF, random forest; RMSE,

root mean square error; RRSE, root relative squared error; SVR, support vector regression.
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k-fold, 0.6684 from MLP (3-6-1) for train-test split. Additionally, the

greatest RAE and RRSE values were found in GP for k-fold and MLP

(3-6-1) for train-test split.

In the k-fold cross validation technique, in terms of MLP model

performances, the MLP with the structure of 3-6-1 was more success-

ful than the other MLP structures with the R value of 0.9622. More-

over, RMSE, RRSE, MAE, and RAE values were lower for this

structure. In the present study, for the k-NN, the best k value was

selected as 1 with the greatest R (0.9515) and lowest RMSE (0.4902)

values.

In the train-test split method, the most successful MLP structure

was 3-3-1. This model recorded the maximum R-value by 0.9317 and

the minimum MAE and RMSE values by 0.4781 and 0.6921, respec-

tively. In the present investigation, 1-NN showed the maximum

R (0.9370) value and the minimum MAE (0.2533) and RMSE (0.5982)

values among the k-NN models. Based on what was found, the pow-

erful algorithm for the estimation of moisture content was RF both

k-fold cross validation and train-test split. The focus was to highlight

differences among the algorithms and the variations between the

models based on different variables. Herein, Table 3 clearly presents

which models and variables are successful in achieving this for

the estimation of moisture content.

Comply with the findings of this study; Sa�glam and Çetin (2022)

reported that for the estimation of moisture content of apple slices,

R-values were obtained between 0.8728 and 0.9873 for k-NN and RF

algorithms, respectively. Kırbaş et al. (2019) found R values between

0.09932 and 0.9993 using MLP algorithm for moisture content esti-

mation of pomelo fruit drying. Tarafdar et al. (2019) performed mois-

ture content estimation of mushrooms using ANNs, and the

researchers claimed that the greatest R-value was 0.9991. Lately, Onu

et al. (2022) carried out an investigation for estimation of moisture

content of cocoyam samples by R2 of 0.9583, and 0.9971 for ANN

and adaptive neuro-fuzzy inference system (ANFIS) models, respec-

tively. In another study, Rasooli Sharabiani et al. (2021) evaluated the

moisture content of apple slices in microwave and convective drying

using ANN and they indicated that the R values were 0.9991 and

0.9993, respectively. Also, Satorabi et al. (2021) estimated the mois-

ture content of dried apricot samples using ANFIS and genetic algo-

rithm (GA) integrated with ANN (GA-ANN) and obtained the R values

of 0.9990 for both models.

TABLE 4 Performance outcomes of
machine learning algorithms in the
estimation of moisture ratio.

k-fold cross validation

R MAE RMSE RAE (%) RRSE (%)Algorithms

MLP (4-4-1) 0.9999 0.0022 0.0039 0.76 1.22

MLP (4-8-1) 0.9998 0.0028 0.0059 0.98 1.85

MLP (4-12-1) 0.9999 0.0021 0.0037 0.76 1.16

GP 0.9923 0.0325 0.0423 11.42 13.24

SVR 0.9958 0.0076 0.0304 2.66 9.52

1-NN 0.9905 0.0321 0.0452 11.30 14.14

3-NN 0.9910 0.0253 0.0459 8.88 14.36

5-NN 0.9840 0.0301 0.0597 10.57 18.69

RF 0.9996 0.0066 0.0090 2.32 2.81

Train-test split

R MAE RMSE RAE (%) RRSE (%)Algorithms

MLP (4-4-1) 0.9987 0.0155 0.0216 5.23 6.45

MLP (4-8-1) 0.9985 0.0176 0.0233 5.93 6.97

MLP (4-12-1) 1.0000 0.0013 0.0018 0.44 0.55

GP 0.9893 0.0368 0.0490 12.37 14.62

SVR 0.9958 0.0096 0.0334 3.24 9.97

1-NN 0.9912 0.0333 0.0468 11.21 13.97

3-NN 0.9911 0.0292 0.0474 9.81 14.14

5-NN 0.9851 0.0365 0.0614 12.27 18.33

RF 0.9996 0.0093 0.0121 3.12 3.61

Note: MLP-type ANN parameters; η: learning ratio: 0.3; α: momentum coefficient: 0.2; NoE: number of

epochs: 500; activation function: sigmoid. The number of inputs is 4, the number of outputs is 1, and the

number of neurons in the hidden layers are 4, 8, and 12, respectively.

Abbreviations: AN, artificial neural network; GP, Gaussian processes; KNN, k-nearest neighbors; MAE,

mean absolute error; MLP, multilayer perceptron; RAE, relative absolute error; RF, random forest; RMSE,

root mean square error; RRSE, root relative squared error; SVR, support vector regression.
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TABLE 5 The mean accuracies and performance metrics for drying methods.

Model
Acc. (%) TP rate Precision F-measure MCC ROC area PRC area

k-fold cross validation

MLP

50�C 0.935 0.906 0.921 0.897 0.991 0.983

70�C 0.825 0.943 0.880 0.863 0.974 0.935

360 W 0.852 0.920 0.885 0.873 0.970 0.893

630 W 0.778 0.875 0.824 0.813 0.978 0.901

540 W-60�C 82 0.538 0.778 0.636 0.633 0.918 0.754

500 W 0.933 0.646 0.764 0.725 0.979 0.903

1000 W 0.667 0.828 0.738 0.709 0.925 0.810

500 W-60�C 0.700 0.750 0.724 0.692 0.916 0.695

RF

50�C 0.935 0.906 0.921 0.897 0.981 0.964

70�C 0.900 0.878 0.889 0.869 0.968 0.922

360 W 0.778 0.808 0.792 0.770 0.957 0.833

630 W 0.667 0.800 0.727 0.713 0.908 0.689

540 W-60�C 78 0.538 1.000 0.700 0.725 0.887 0.698

500 W 0.867 0.848 0.857 0.828 0.969 0.936

1000 W 0.667 0.545 0.600 0.535 0.900 0.528

500 W-60�C 0.467 0.500 0.483 0.421 0.840 0.408

k-NN

50�C 0.984 0.871 0.924 0.903 0.981 0.966

70�C 0.950 0.792 0.950 0.842 0.964 0.880

360 W 0.778 0.568 0.778 0.621 0.901 0.554

630 W 0.222 0.333 0.222 0.231 0.820 0.366

540 W-60�C 70 0.011 0.100 0.011 0.014 0.816 0.485

500 W 0.889 0.769 0.825 0.790 0.961 0.875

1000 W 0.583 0.512 0.545 0.472 0.825 0.416

500 W-60�C 0.133 0.400 0.200 0.180 0.749 0.235

Model
Acc. (%) TP rate Precision F-measure MCC ROC area PRC area

Train-test split

MLP

50�C 0.960 0.960 0.960 0.942 1.000 1.000

70�C 0.889 0.800 0.842 0.823 0.900 0.902

360 W 0.875 1.000 0.933 0.929 0.952 0.901

630 W 0.500 0.667 0.571 0.559 0.844 0.577

540 W-60�C 86 0.667 1.000 0.800 0.811 1.000 1.000

500 W 0.933 0.636 0.757 0.709 0.984 0.943

1000 W 0.500 1.000 0.667 0.683 0.968 0.906

500 W-60�C 1.000 1.000 1.000 1.000 1.000 1.000

RF

50�C 0.920 1.000 0.958 0.942 0.996 0.992

70�C 0.889 0.727 0.800 0.777 0.905 0.854

360 W 0.750 1.000 0.857 0.854 0.889 0.825

630 W 0.500 0.667 0.571 0.559 0.659 0.441

540 W-60�C 77 0.667 0.286 0.400 0.405 0.966 0.758

500 W 0.800 0.923 0.857 0.831 0.945 0.889

(Continues)
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3.4.2 | Moisture ratio

Table 4 exhibits the performance findings of the estimation of mois-

ture ratio. In the k-fold cross validation, the best R-values were calcu-

lated for MLP (4-4-1) and MLP (4-12-1) algorithms with a value of

0.9999. The least MAE (0.0021) and RMSE (0.0059) were found for

MLP (4-12-1) model. The 5-NN had the lowest R as 0.9840, and the

SVR had highest MAE and RAE as 0.0325 and 11.42%, respectively.

Among the k-NN models, the most successful one was the 3-NN due

to the greatest R (0.9910) and the minimum MAE (0.0253) and RAE

(8.88%). In the test-train split method, the best correlation coefficient

obtained for MLP (4-12-1) with the value of 1.0000, and this was also

the best result of the present study. More specifically, the MLP model

(4-12-1) presented the minimum MAE (0.0013), RMSE (0.0018), RAE

(0.44%), and RRSE (0.55%). This algorithm was developed with the R-

value and RMSE value of 0.9996 and 0.0121, respectively. While the

minimum R-value of 0.9851 and the highest RMSE value of 0.0614

were found for 5-NN model. In addition, GP and 5-NN had maximum

RAE and RRSE percent. In this study, the powerful classifiers for esti-

mation of moisture ratio were MLP models both k-fold cross valida-

tion and train-test data groups. Herein, Table 4 shows the success of

MLP and RF models for the estimation of moisture content. It has

been proven that variations in MLP structure could positively incre-

ment the results.

Different models were applied to drying characteristics in previ-

ous studies, and similar results were obtained in the current study. By

using MLP, k-NN, RF, GP, and SVR algorithms Sa�glam and Çetin

(2022) estimated the moisture ratio of apple slices using six various

drying approaches. The best R values were reported as 0.9800,

0.9873, and 0.9841 for Golden Delicious, Oregon Spur, and Granny

Smith, respectively. Çetin (2022a) estimated moisture ratio using RF,

MLP, GP, SVR, and k-NN, and k-NN was an outstanding algorithm

with the R values of 0.9898 and 0.9942 for Valencia and Washington

Navel orange cultivars, respectively. Zadhossein et al. (2022) obtained

the greatest R2 for the estimation of moisture ratio for ANN and

ANFIS models as 0.9940 and 0.9978, respectively. Kırbaş et al. (2019)

used drying duration, drying method, and thickness of dried sample as

the input values to estimate the moisture ratio of pomelo fruit using

MLP algorithm, and the R-values were from 0.0993 to 0.9931. Taraf-

dar et al. (2019) determined the moisture ratio of dried mushrooms

using ANNs. Initial and final temperature, process duration, primary

moisture content, pressure, and thickness of dried sample were

employed as inputs. The best correlation coefficient was found to be

0.9994. Okonkwo et al. (2022) indicated that ANFIS presented better

results compared to ANNs for the estimation of moisture values of

orange-fleshed sweet potato with correlation coefficient and RMSE

values of 0.99786 and 0.0225, respectively. In earlier research, the

estimation of moisture ratio of Echium amoenum was carried out using

ANFIS and ANN by Chasiotis et al. (2021). The ANFIS and ANN

models achieved in the study showed the best performance with R2

values of 0.9992 and 0.9988, respectively. These results also conform

to the current study.

3.5 | Discrimination performance results

During current study, dried apricot was discriminated for different

drying methods. In the discrimination, moisture content, moisture

ratio, drying rate, drying time, and ln (MR) values were used and three

different models (MLP, RF, and k-NN) were applied. In case of the

model based on drying characteristics of apricots, very good discrimi-

nation accuracies were found for all three classifiers.

The mean accuracies and performance metrics for drying

methods are presented in Table 5. The MLP generated the greatest

accuracy of 82.00%. In addition, RF allowed the drying methods to be

discriminated with the accuracy of 78.00%. With the k-NN, the lowest

TABLE 5 (Continued)

Model
Acc. (%) TP rate Precision F-measure MCC ROC area PRC area

Train-test split

1000 W 0.500 0.500 0.500 0.430 0.837 0.578

500 W-60�C 0.571 0.500 0.533 0.487 0.862 0.360

k-NN

50�C 1.000 0.833 0.909 0.871 0.998 0.993

70�C 0.889 0.800 0.842 0.823 0.934 0.782

360 W 0.750 0.545 0.632 0.594 0.908 0.568

630 W 0.250 0.500 0.333 0.331 0.607 0.162

540 W-60�C 71 0.333 1.000 0.500 0.570 0.641 0.358

500 W 0.800 0.706 0.750 0.691 0.899 0.699

1000 W 0.300 0.429 0.353 0.285 0.665 0.297

500 W-60�C 0.143 0.333 0.200 0.172 0.778 0.203

Abbreviations: k-NN, k-nearest neighbor; MCC, Matthews correlation coefficient; MLP, multilayer perceptron; PRC, precision–recall; RF, random forest;

ROC, receiver operating characteristic; TP, true positive.
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TABLE 6 Confusion matrix of discriminators for drying methods.

k-fold cross validation

MLP 50�C 70�C 360 W 630 W 540 W-60�C 500 W 1000 W 540 W-60�C

50�C 58 1 0 0 0 3 0 0

70�C 2 33 0 0 1 3 1 0

360 W 0 0 23 0 0 3 0 1

630 W 0 0 1 14 1 2 0 0

540 W-60�C 0 1 0 2 7 2 0 1

500 W 3 0 0 0 0 42 0 0

1000 W 0 0 1 0 0 6 24 5

500 W-60�C 1 0 0 0 0 4 4 21

RF 50�C 70�C 360 W 630 W 540 W-60�C 500 W 1000 W 540 W-60�C

50�C 58 2 1 0 0 0 0 1

70�C 2 36 0 0 0 1 1 0

360 W 1 0 21 0 0 1 0 4

630 W 1 1 3 12 0 0 1 0

540 W-60�C 0 2 0 3 7 1 0 0

500 W 1 0 0 0 0 39 4 1

1000 W 0 0 1 0 0 3 24 8

500 W-60�C 1 0 0 0 0 1 14 14

k-NN 50�C 70�C 360 W 630 W 540 W-60�C 500 W 1000 W 540 W-60�C

50�C 61 1 0 0 0 0 0 0

70�C 1 38 0 0 0 1 0 0

360 W 2 0 21 0 0 0 1 3

630 W 2 1 10 4 1 0 0 0

540 W-60�C 1 4 0 8 0 0 0 0

500 W 0 3 0 0 0 40 2 0

1000 W 1 1 1 0 0 9 21 3

500 W-60�C 2 0 5 0 0 2 17 4

Test-train split

MLP 50�C 70�C 360 W 630 W 540 W-60�C 500 W 1000 W 540 W-60�C

50�C 24 1 0 0 0 0 0 0

70�C 0 8 0 0 0 1 0 0

360 W 0 0 7 0 0 1 0 0

630 W 0 1 0 2 1 0 0 0

540 W-60�C 0 0 0 1 2 0 0 0

500 W 1 0 0 0 0 14 0 0

1000 W 0 0 0 0 0 5 5 0

500 W-60�C 0 0 0 0 0 0 0 7

RF 50�C 70�C 360 W 630 W 540 W-60�C 500 W 1000 W 540 W-60�C

50�C 23 2 0 0 0 0 0 0

70�C 0 8 0 0 1 0 0 0

360 W 0 0 6 0 1 0 0 1

630 W 0 1 0 2 1 0 0 0

540 W- 60�C 0 0 0 1 2 0 0 0

500 W 0 0 0 0 1 12 2 0

1000 W 0 0 0 0 1 1 5 3

500 W-60�C 0 0 0 0 0 0 3 4

(Continues)
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TABLE 6 (Continued)

Test-train split

k-NN 50�C 70�C 360 W 630 W 540 W-60�C 500 W 1000 W 540 W-60�C

50�C 25 0 0 0 0 0 0 0

70�C 1 8 0 0 0 0 0 0

360 W 1 0 6 0 0 0 0 1

630 W 1 1 1 1 0 0 0 0

540 W-60�C 0 1 0 1 1 0 0 0

500 W 1 0 0 0 0 12 2 0

1000 W 1 0 0 0 0 5 3 1

500 W-60�C 0 0 4 0 0 0 2 1

Note: Since the values obtained for the drying conditions in the confusion matrices are not the same number, the numbers in the distribution may vary.

Color shades represent true positive values.

Abbreviations: k-NN, k-nearest neighbor; MLP, multilayer perceptron; RF, random forest.

F IGURE 5 The receiver operating characteristic curves of best (above) and worst (bottom) discrimination for developed machine learning
algorithms based on drying characteristics.
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accuracy was obtained by 70.00%. Additionally, the results of other

discrimination metrics supported these findings. With the MLP algo-

rithm, the greatest TP rate amounted to 0.935, F-measure to 0.921,

MCC to 0.897, and ROC area to 0.991 at 50�C. The lowest values of

TP rate, F-measure, and MCC were found at 540 W and 60�C in

k-NN model by 0.011, 0.0.11, and 0.014, respectively. Generally, the

lowest ROC area and PRC area values were obtained for 500 W-60�C

drying conditions.

Confusion matrix of discriminators for drying methods is given in

Table 6. The confusion matrix showed that among 62 50�C air-

convective conditions, 58, 58, and 61 were categorized precisely, for

MLP, RF, and k-NN respectively. In the train test split method, the

greatest accuracy value was determined as 86.00% in MLP algorithm.

This algorithm was followed by RF and k-NN with accuracy values of

77.00% and 71.00%, respectively. For the 500 W-60�C hybrid condi-

tion, the best TP rate, precision, F-measure, MCC, ROC area, and PRC

area values were determined in MLP, while the lowest performance

metrics were found with k-NN. Considering these metrices, the high-

est results were found at 50�C air-convective condition (Table 6). The

confusion matrix showed that among 25 values at 50�C air-convective

conditions, 24, 23, and 25 were categorized precisely, for MLP, RF,

and k-NN, respectively (Table 6).

Researchers have discriminated drying conditions in previous

studies according to different drying characteristics. Kurtulmuş et al.

(2014) reported the texture feature-based discrimination accuracy of

SVM, k-NN, DT, NB, and ANN algorithms for dried tarhana under dif-

ferent conditions by 93.50%, 99.50%, 92.10%, 94.40%, and 98.60%

and for step-by-step discriminant assessment-based classifier, by

95.40%, 96.30%, 93.10%, 92.60%, and 91.70% for principal compo-

nent analysis-based classifier, respectively. Przybył et al. (2020) devel-

oped various ANN models for dried strawberry sorting using acoustic

technique and reported RMSE values of 0.16, 0.09, and 0.35 for MLP

structures of (2-6-1), (2-14-1), and (2-4-1), respectively. Makarichian

et al. (2021) evaluated various drying methods for garlic as fluid bed

dryer with in-line near-infrared, atmospheric freeze-drying, and vac-

uum dryer with near-infrared techniques. The authors obtained accu-

racy values of 96.67% for linear discriminant analysis and 100% for

backpropagation neural network (BPNN). Lately, Ropelewska and

Wrzodak (2022) implied that the distinction exactness of freeze-dried

beetroot using textural characteristics was from 85% to 96% for RF,

logistic, and PART algorithms.

ROC area curves showed that drying methods for all classifiers

were established based on drying characteristics. The receiver-

operating curve represents the performance of the classifiers that

approved that this classifier precisely recognized drying methods.

Expectedly the highest ROC area values were found for MLP algo-

rithm. Particularly, the ROC area values certify very high performance

for automatic identification of any understudy of the drying method

discrimination. As seen in the ROC area curves (Figure 5), the best dis-

criminated method was 50�C convective drying of both k-fold cross

validation and train-test split while the worst discriminated methods

were 500 W-60�C k-fold cross validation and 630 W train-test split.

4 | CONCLUSIONS

Drying characteristics of the apricots should be optimized for

designing the related dryers and quality assessment. Present find-

ings show that the drying characteristics and product-related fea-

tures could differ between methods and therefore machine learning

approaches could be employed as a functional technique for dis-

crimination as well as for the development of precision drying sys-

tems. Among algorithms, the RF and MLP are found as optimum

classifiers for estimation and discrimination. The highest and lowest

amount of drying time and SEC were obtained in CV and MW-CV

dryers, respectively.

In this study, the main challenge was the absence of image pro-

cessing techniques during estimation and classification. The accu-

racy of the estimations could have been improved if image analysis

had been used to obtain information about the size, shape, and

color of the product. Additionally, it would have allowed us to

obtain results more rapidly. The current procedure applying

machine learning to drying characteristics may have great practical

application in apricot drying processes. Models based on moisture

content and moisture ratio have been shown to be an effective

method for monitoring, controlling, and optimizing drying systems.

The estimation models proposed in this study provide useful infor-

mation for the development of sustainable and smart technologies

in similar products. In addition, for future research, it is suggested

to perform a supplementary examination to find out the influences

of other drying characteristics such as drying temperature, micro-

wave, and infrared power using new machine learning approaches.

In addition, it would be beneficial to test deep learning algorithms

supported by image processing and develop new models. This could

enhance the efficiency of measurements and overall performance

results.
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