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A B S T R A C T   

The nanofluid flow through two orbicular cylinders is explored utilizing the overall Koo–Klein-
streuer–Li (KKL) model within the nearness of a magnetic field. The impact of thermal radiation is 
considered in the energy equation. The novelty of this study is examining convective heat transfer 
for nanofluid flow between two flat tubes with the Akbari-Ganji method and Finite Element 
Techniques to examine the heat flux field by implies of 2D forms of temperature and velocity at 
unprecedented Reynolds numbers. The approaches for solving ODEs are AGM and FEM. Semi- 
analytical methods are assessed for specific parameters of aspect ratio, Hartmann number, Eck-
ert number, and Reynolds quantity with various values. Adding Ha, Ec, and G causes the tem-
perature gradient to grow, while adding the Reynolds number causes it to decrease. As the 
Lorentz forces increase, the velocity decreases; nevertheless, as the Reynolds number rises, the 
velocity decreases. With the reduction of the fluid’s dynamic viscosity, the temperature will 
decrease, which will decrease the thermal trend along the vertical length of the pipes.   

1. Introduction 

Magnetic hydrodynamic convective free flow has wide applications in industries, mechanics, and bioscience. Especially in the last 
decade, nanotechnology has been displayed as a better approach to improving heat conveyance. The principle of magnetohydrody-
namics (MHD) is a critical interdisciplinary field. One of the essential applications of this effect is pumping materials that are difficult 
to pump with conventional pumps. Among the actual examples of this model, we can refer to this sentence: Various renewable energy 
systems such as solar energy, waste heat recovery, geothermal energy, combustion, latent heat storage, and air conditioning. MHD 
material science is concerned with the impacts of the magnetism field on the energetic conducting liquid. The vital of the MHD control 
era is based on Faraday’s law of electromagnetic acceptance, which states that when a conductor and a magnetic field move relative to 
each other, at that point, the voltage is initiated within the conductor [1–8]. Salehi et al. [9] examined the hydrothermal investigation 
of Magneto hydrodynamic squeezing mix liquid suspended via hybrid nanoparticles. This paper examines the cross-breed nano-
particle, whereas Particles are Fe3O4 and Mos2. Akbari has fathomed the nonlinear conditions- Ganji’s method and the numerical 
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strategy compare the result. Ghadikolaei et al. [10] studied the Magneto hydro dynamic boundary layer examination to place 
micropolar dusty liquid containing hybrid nanoparticles over a porous environment. The temperature has also increased due to the 
Hartman number update since the Joule heating influence, according to the results of his study. The range of temperature and velocity 
in the x-course and the precise velocity at which nanofluids flow through triangular, chamfer, and rectangular blades, were investi-
gated by Shadman et al. The effect of the magnetic field on the displacement of energy has been reported by Sheikhul-Islami and 
colleagues [11]. The results of their research stated that the higher cap velocity, including the impact of Kelvin s strengths, is more 
noticeable. Bondarova et al. [12] used Buongiorno’s math design for the effect of magnetic energy on absolute temporal convection. 
Sheikh al-Islami and Rukni [13] investigated the impact of Lorentz strengths on absolute convection in a moiety. Bondarova et al.’s 
[14] headline analysis was used to simulate MHD absolute convection in a full-blown depth. Sheikhul-Islami and Vajrawallu [15] 
examined nanofluid flow and heat transfer in-depth with uncertain Lorentz strengths. Shermet et al. [16] analyzed the magnetism 
amplitude on absolute convection. Their wavy light depth displayed a corner radiator impact on nanofluid ooze. Semi-analytic 
strategies can illuminate nonlinear conditions. There are a few semi-analytic strategies, such as DTM [17–19], HPM [20,21], HAM 
[22], ADM [23,24], OHAM [25,26], etc. One of the foremost later and influential semi-analytic come closes is AGM. Mirgol Babaei 
et al. [27] utilized the Akbari-Ganji strategy so that Duffing is not a linear oscillator. They demonstrated the realness of this issue. 
Nanofluid efflux and heat transfer have been reenacted by a few creators within the final decade [28–30]. Ferdosi and his colleagues 
[31] researched the changes in buckling systems in various types of carbon tubes. Moradi and his colleagues [32] conducted extensive 
studies on improving heat transfer and oil pressure drop in a nanofluid’s hydraulic and thermal systems. Asgari and his colleagues [33] 
conducted various research on increasing the heat transfer properties of carbon nanotubes through nitrogen doping. The results 
appeared to be a 32.7% enhancement in convective heat transfer coefficient at a Reynolds number of 8676 and a 27% increment in 
thermal conductivity at 0.5 mass% and 30 ◦C. Nanoparticles are used in various fields, such as solar collectors, petrochemicals, and 
chemical engineering, due to their superior properties to conventional fluids [34]. Also, researchers conducted many studies regarding 
the effects of magnetic parameters and solar energy on fluids and nanofluids passing through flat plates. The amount of radiation was 
also calculated while calculating the impact of the parameters of the Prandtl number and Nusselt number [35–44]. Also, researchers 
have conducted many studies in the field of heat flow analysis, displacement, and entropy effects around the semi-annular chamber 
with different nanofluids [45–48]. The primary purpose of this essay is to show the impact of magnetism purview aboard hydrothermal 

Nomenclature 

Cp Specific heat (kJ/kg.K) 
Ec Eckert number)dimensionless number( 
u Dimensionless velocity (m/s) 
B Stable applied magnetic amplitude 
Pr Prandtl number)dimensionless number( 
Ha Hartmann number)dimensionless) 
Nu Nusselt number)dimensionless number( 
Re Reynolds number)dimensionless) 
Rd Radiation (dimensionless) 
T Temperature (K) 
k Thermal conductivity (Wm− 1K− 1) 
ω Stable circulation velocity (rad/s) 
θ Dimensionless 
α Thermic diffusivity (m2/s) 
μ Dynamic viscosity (Pa.s) 
φ Capacity fraction (%) 
ρ Density (kg/m3)  

Table 1(a) 
The modulus measures of nanofluid.  

modulus measures Al2O3–water 

a1 52.823488759 
a2 6.117637295 
a3 0.6958745084 
a4 4.17455565786E-02 
a5 0.177619300241 
a6 - 298.23819084 
a7 - 34.533616906 
a8 - 3.9229889283 
a9 - 0.2354749626 
a10 - 0.999062347  
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operation of nanofluid betwixt two tubes. Akbari-Ganji style is utilized to fathom this issue. The designation of aspect ratio, radiation 
parameter, Reynolds number, Eckert number, and Hartmann number is exhibited. In addition to that, under various numerical and 
analytical schemes, solution time and grid generation remain significant obstacles that are easily solved by current methods, and this is 
a notable feature of the application of Akbari Ganji techniques. The coefficient value for Al2o3 and Thermo physical properties of 
water and nanoparticles, respectively, are given in Table 1& Table 2. The reasons for utilizing aluminum oxide nanofluid within the 
display ponder are that Compared to its equivalent nanoparticles, it includes a higher particular surface range and a high flaw of the 
fabric surface and specific structure of the nanoparticles. The novelty of this study is the examination of convective heat transfer for 
nanofluid flow between two flat tubes with AGM and FEM strategies so that we examine the heat flux field by implies of 2D forms of 
temperature and velocity at distinctive Reynolds numbers. 

2. Governing formulae 

Fig. 1 depicts the issue’s geometry schematically. Laminar flow design and a two - dimensional supposition of fluid fathoming space 
per a consistent state are key hypotheses for this problem. The temperatures of the inner and outer tubes are maintained at constant 
values during expansion with the assumption that the internal tube will rotate at a constant velocity. Laminar 2D flow in cylindrical 
coordinates is debated (Fig. 1). The governing formulae are as below [28]: 
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knf Is gotten matching Koo–Kleinstreuer–Li (KKL) model [28]: 
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All required factors and properties are outlined in Tables 1a and 1b [28]. The dimensionless shapes of over conditions are as takes 
after [28]: 
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Table 1(b) 
Thermal physical attributes of water and nanoparticle.   

ρ (kg/m3) CP( J/gr) K(W/m⋅K) dP (nm) σ (P) 

Pure water 997.1 4179 0.613 – 0.05 
Al2o3 3890 880 30 5 10 E − 12  
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in the coupled equations above (obtained by the kkl method and the dimensionless operation was performed on it), u is the velocity, Ha 
is the Hartman parameter, Re is the Reynolds number, theta is the heat transfer variable, Ec is the Eckert number, Pr is the Prandtl 
number and Rd is the radiation variable. 

The boundary conditions of the problem are considered as follows [28]: 

r= η : u = 1 . θ = 1  

r= 1 : u = 0 . θ = 0 (10)  
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3. A. Validation for methods 

In this segment, compared AGM procedure and NUM method are used for approval. The sum of computational blunders in the AGM 
and WRM methods could be higher compared to the Numerical methodology in Table 2. The most extreme number of errors occurred 
in x = 0.5, and the least number of mistakes happened in x = 0.8. 

The 2D graphs in Fig. 2 check the convergence and accuracy of the two AGM, NUM, and FEM methods concerning each other. 
According to Figures a-2 and c-2, with increasing distance in the r direction, first, the fluid velocity increases significantly. It reaches its 
highest value in the middle of the tube, but the fluid velocity decreases when passing the value of r = 0.7. We could check this process 
correctly using both numerical analysis methods, AGM and NUM, and the agreement between them has been established. For figures b- 
2 and d-2, temperature changes were checked with both techniques, and the closeness of the lines has reached its minimum, and the 
convergence process has progressed well. 

4. Finite element method (FEM) and AGM method [29] 

A finite element method (truncated as FEM) is a scalar strategy to attain a surmised solution to a course of matters administered by 
elliptic partial differential equations. It would be best to use mathematics to comprehensively understand and quantify physical 
phenomena: B. Basic or fluid behavior, heat transport, wave engendering, and living cell development. Most of these shapes are 
depicted by PDEs. In any case, numerical strategies have been created over the final few decades for computers to solve these PDEs, and 
one of the foremost prevalent nowadays is the FEM. The finite element technique can be a principal numerical procedure. One of the 

Fig. 1. Schematic of the plan under consideration.  

Table 2 
Compare results between the Akbari Ganji method, Weighted residual method [11], and NUM method for Re = 1, Ha = 3, Ec = 0.1, and Rd = 0.1.   

x = 0.5 x = 0.6 x = 0.7 x = 0.8 x = 0.9 x = 1 

AGM 1 0.74 0.55 0.32 0.12 0 
WRM 1 0.72 0.53 0.31 0.12 0 
NUM 1 0. 72 0.53 0.31 0.12 0  
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common sense applications for this procedure is the FlexPDE program, which realizes the nonlinear fragmentary differential equations 
and the modulus differential equations. Interpret AGM and explain how to use it, following the description of the main equations and 
their boundary conditions [30]: 

T(y)=
∑3

i=0
aiyi = y3a3 + y2a2 + ya1 + a0 (12)  

U(y)=
∑3

i=0
biyi = y3b3 + y2b2 + yb1 + b0 (13) 

According to the Akbari - Ganji method, assume a test function as a solution to an equation. Perform the dissolution by adding 
boundary layers to the AGM equation. The boundary conditions are as follows [30]: 

T(0)= 1 → a0 = 1 (14)  

U(0)= 1 → b0 = 1 (15)  

T(1)= 0 → a3 + a2 + a1 + a0 = 0 (16)  

U(1)= 0→b3 + b2 + b1 + b0 = 0 (17) 

Fig. 2. Simulation of a,c) the velocity and b,d) the temperature r profile by FEM, AGM and NUM methods that solution at Re = 1, Ha = 3, Ec = 0.1, 
and Rd = 0.1. 
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The dissolution is acquired by applying the boundary conditions to the master equation. Boundary conditions apply to the above 
equation. Considering the above points, we considered two test functions containing eight constant coefficients and created eight 
equations. The equation can be derived as follows by substituting the coefficients obtained from the described actions under the 
following conditions [30]: 

T(y)= − 0.16869y3 + 0.33784y2 − 1.16915y + 1 (18)  

U(y)= 0.32658y3 − 1.02899y2 − 0.29759y + 1 (19)  

5. The AGM method for this paper 

First, let’s discuss the residuals [30]: 
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The arrangements of these conditions are as [30]: 

u(r)=
∑5

i=0
airi = a5r5 + a4r4 + a3r3 + a2r2 + a1r + a0, θ(r) =

∑4

i=0
biri = b4r4 + b3r3 + b2r2 + b1r + b0 (22) 

We regard a test work as the equation’s arrangement in agreement with AGM [30]: 

r= η : u = 1 . θ = 1 (23)  

r= 1 : u = 0 . θ = 0 (24) 

Agreeing to underneath conditions, all consistent parameters can be obtained [30]: 

u(r)= u(B.C), θ(r)= θ(B.C)

F(B.C)=O,G(B.C)=O (25)  

F′

(B.C)= 0,G′

(B.C)=O  

u(0.5)= 1 → 0.3125e − 1.a5 + 0.625e − 1.a4 + 0.125.a3 + 0.25.a2 + 0.5.a1 + a0 = 1 (26)  

u(1)= 0 → a5 + a4 + a3 + a2 + a1 + a0 = 0 (27)  

θ(0.5) = 1 → 0.625e − 1.b4 + 0.125.b3 + 0.25.b2 + 0.5.b1 + b0 = 1 (28)  

θ(1) = 0 → b4 + b3 + b2 + b1 + b0 = 0 (29) 

Applying the boundary equation to the primary equation yields the answer. The equation mentioned above is subjected to the 
boundary conditions. Given the abovementioned facts, we considered 2 test functions with five constant coefficients and eight 
equations [30]: 

{a0 = − 0.9706372496e − 1+ 0.2904894223, a1 = 11.61708802+ .8346881589.I, a2 = − 34.42044012 − 3.954228212.I,
a3 = 42.61962734 − 0.3246490943e − 1.I, a4 = − 26.16314603+ 6.251497737.I, a5 = 6.443934516 − 3.389982197.I,
b0 = − 0.8259722863 − 2.518520916.I, b1 = 10.11650894+ 13.05735075.I, b2 = − 17.84658165 − 24.13641918.I,
b3 = 11.11376669+ 18.78561605.I, b4 = − 2.557721688 − 5.188026704.I}

(30) 

For example, under the following conditions, by substituting the coefficients obtained from the actions explained, one can derive 
equations like the following [30]: 

U(r)= 5.125670753.r5 − 20.03056984.r4 + 31.68800953.r3 − 25.20682071.r2 + 7.982545767.r + .44116450 (31)  

θ(r)= − 0.5541266969.r4 + 5.633392669.r3 − 13.61422916.r2 + 9.601894124.r− 1.066930937 (32)  

6. Results and discussion 

The flow of Al2o3 water nanoparticles in a loop is examined logically utilizing the Akbari-Ganji technique and FEM technique. The 
efficacies of horizontal magnetic amplitude and heat radiation are considered. The effects of the effective parameters are shown in a 

A. Alizadeh et al.                                                                                                                                                                                                      
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diagram. In arrange to approve the explanatory comes about, Maple 18 and FlexPDE 7, a mathematics-based computer program, are 
used. Evaluating shows discoveries with those taken from the Akbari - Ganji method and finite element technique solver inserted 
within the computer program appeared in Tables 1(b) and 2. A sensible exactitude is accomplished per consideration of mistake 
column sections. Fig. 3(a) shows the velocity segment as natural forces overcome viscous forces and velocity increases. As electro-
magnetic powers overwhelm viscose Power, velocity decrement. In this manner, the velocity increments with expanding Re but di-
minishes with developing Ha. The velocity forms for specific amounts of Hartmann numbers are displayed in Fig. 3(b). Fluid velocity 
decreases when electromagnetic force triumphs over sticky drive by raising the Hartmann number. As a result, a more prominent, 
magnetic location tends to slow the flow of fluids. Fig. 4 displays the part about temperature. It is evident that increasing Re results in 
larger inertia power values rather than goopy strength values, which increases the fluid velocity and raises its temperature. According 
to this diagram, with the fluid’s dynamic viscosity reduction, the temperature will decrease, reducing the thermal trend along the 
vertical length of the pipes. Fig. 5(a) illustrates the range of Nusselt numbers (Nu) for various contents of Re at constant Hartmann 
numbers (Ha). Re has a flip-flop effect on heat transmission and Nu, as evidenced by the fact that when Re increases, the fluid tem-
perature rises and, as a result, temperature angle and Nu number decrease. The temperature field of the fluid decreases as the radiation 
parameter increases, as seen in Fig. 5(b). This sentence shows that the maximum heat received from solar energy is lost on the outer 
surface of the tube, and as we move toward the inner tube, the heat flux decreases. Physically, the Eckert number is the ratio of the 
kinetic energy to the specific enthalpy difference betwixt the wall and the liquid. Therefore, as the Eckert number increases, the kinetic 
energy is converted into internal work energy for the stress of the viscous fluid. Fig. 5(c), the dimensionless temperature is upgraded 
with expanding Ec. This occurs due to the drag caused by the nanoparticles and the additional heat given through thick scattering. 
Fig. 6(a) shows that Rd rises as Re rises because greater Ec results in an increased viscous loss. Fig. 6(b) shows that the temperature 
rises as Ec rises. Figs. 5(a), 6(a) and 6(b) depict the Nu number changes. The Nusselt number increases as Ha expands, but Rd decreases 
as Re expands. With increased weight, the distance between the two pipes gets smaller. As a result, the aspect ratio and heat transfer 
rate increase 

Fig. 3. Corollary for Reynolds numbers in a)Effects of Reynolds parameter on velocity and b) Velocity form for distinctive values of Hartmann 
number by AGM and FEM method. 
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Fig. 4. Corollary for Reynolds numbers in temperature by AGM and FEM method (Ha = 3,Ec = 0.1,Rd = 0.1, θ = 0.5, φ = 0.04,pr = 6.8).  

Fig. 5. Corollary for temperature and Nusselt parameter by changes of Reynolds number(a) and Rd parameter(b) and Ec parameter(c).  
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7. Conclusions 

The nanofluid flow through two orbicular cylinders is explored utilizing the overall KKL diagram within the nearness of a magnetic 
field. The impact of heat radiation is considered in the energy equation. The novelty of this study is examining convective heat transfer 
for nanofluid flow between two flat tubes with AGM and FEM techniques to examine the heat flux field by implies of 2D forms of 
temperature and velocity at unprecedented Reynolds numbers. The approaches for solving ODEs are AGM and FEM. Semi-analytical 
methods are assessed for specific parameters of aspect ratio, Hartmann number, Eckert number, and Reynolds quantity with various 
values. Adding Ha, Ec, and G causes the temperature gradient to grow, while adding Re causes it to decrease. As the Lorentz forces 
increase, the velocity decreases; nevertheless, as the Reynolds number rises, the velocity decreases. Compared to Numerical meth-
odology, the sum of computational blunders in AGM and WRM methods is low.  

• The finite element strategy can be a principal numerical procedure. One of the common sense applications for this procedure is the 
FlexPDE program, which realizes the nonlinear fragmentary differential equations and the modulus differential equations.  

• In arrange to approve the explanatory comes about, Maple 18 and FlexPDE 7; mathematics-based computer programs are utilized.  
• With the reduction of the dynamic viscosity of the fluid, the temperature will decrease, which will decrease the thermal trend along 

the vertical length of the pipes.  
• Reynolds number has a flip-flop effect on heat transmission and Nu, as evidenced by the fact that when Re increases, the fluid 

temperature rises and, as a result, temperature angle and Nu number decrease. 
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