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A B S T R A C T   

Water pollution management, reduction, and elimination are critical challenges of the current era that threaten 
millions of lives. By spreading the coronavirus in December 2019, the use of antibiotics, such as azithromycin 
increased. This drug was not metabolized, and entered the surface waters. ZIF-8/Zeolit composite was made by 
the sonochemical method. Furthermore, the effect of pH, the regeneration of adsorbents, kinetics, isotherms, and 
thermodynamics were attended. The adsorption capacity of zeolite, ZIF-8, and the composite ZIF-8/Zeolite were 
22.37, 235.3, and 131 mg/g, respectively. The adsorbent reaches the equilibrium in 60 min, and at pH = 8. The 
adsorption process was spontaneous, endothermic associated with increased entropy. The results of the exper-
iment were analyzed using Langmuir isotherms and pseudo-second order kinetic models with a R2 of 0.99, and 
successfully removing the composite by 85% in 10 cycles. It indicated that the maximum amount of drug could 
be removed with a small amount of composite.   

1. Introduction 

The water crisis is the foremost vital topic in today’s world. Nowa-
days, the scarcity of clean water resources, and pollution have seriously 
endangered people’s lives, especially in developing countries [1–3]. 
Diseases caused by polluted water are the reason of many deaths in 
developing countries [4–6]. The water scarcity crisis in the last century 
had more casualties than infectious diseases and HIV. Therefore, the lack 
of clean water resources led to the wastewater treatment [7,8]. There 
were sustainable organic compounds, such as the personal care prod-
ucts, and medicines in municipal wastewater, natural waters, and even 
drinking water in the last decade. These drugs can enter water resources 

via various routes, such as municipal sewage, hospitals, veterinary, and 
farms [9,10]. By coronavirus outbreak in 2019, a broad proceeding was 
taken to decrease the transmission of SARS-CoV-2 [11,12]. Early in the 
pandemic, it was proposed to use the antibiotics to treat acute and severe 
cases of Covid-19, and by spreading the virus, large quantities of anti-
biotics were prescribed [13–15]. Azithromycin is one of the most widely 
used antibiotics. It is an antibiotic used to prevent the infections caused 
by certain bacteria [16]. Prescribing antibiotics should not be under-
estimated because of continued utilization of antibiotics, and their entry 
into the water cycle lead to drug resistance [17,18]. As drug resistance 
increases in living organisms, common infections that can be easily 
treated may become more difficult for treating. The biggest problem is 
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the increase in the multidrug-resistant bacteria [19]. Researchers used 
the simulation methods to adsorb drugs [20,21]. Various methods, such 
as membrane, adsorption, ozonation, and advanced oxidation processes 
(AOP) were used to remove the medicinal compounds from water 
[22–25]. The materials, such as activated carbon, metal–organic 
frameworks (MOFs), and polymeric adsorbents have a high particular 
surface area, and permeable structure, and are modifiable, which can be 
compelled in specific execution, and expulsion of contaminants [26]. 
MOFs showed high ability in the adsorption and loading of materials. 
They are made from the coordination between metal clusters and 
organic ligands. MOFs appear to moderately have small instability than 
ordinary porous materials [27]. Using MOFs in the environmental ap-
plications attracted attention in recent years [28–34]. ZIF-8 was used for 
the adsorption of Norfloxacin in polluted water. The maximum 
adsorption measured at 40 ◦C, pH 5, and C0 = 10–70 mg/l, was 69.4 mg/ 
g for Norfloxacin which is poorly functional compared to other MOFs 
due to the effect of adsorption mechanisms [35]. One of the bugs 

associated using MOFs was their regeneration and the chemical and 
thermal stability of these materials in an aqueous environment. The 
mechanism of instability against water is caused by two reactions of 
ligand displacement and hydrolysis. 

In the process of ligand displacement, the cation (metal) binds with 
water and the ligand is released. In Hydrolysis, the metal–ligand bond is 
broken, and the water molecule, which is decomposed into hydroxyl ion, 
enters the bond with the metal and the ligand [36]. 

The key factor in the stability of MOFs is that the metal cluster is 
neutral. Otherwise, the electrophilic metal enters the bond with oxygen 
and reduces the porosity. In addition to the neutrality of the metal 
cluster, the metal–ligand bond strength is an important parameter in 
stability. The hydrophobicity of the ligand and the metal plays an 
important role in the stability of the MOF, because it does not have a 
tendency to coordinate with water [37,38]. 

The stability period of MOFs is calculated as follow. A certain 
amount of MOF is poured into a certain amount of water at room 

Fig. 1. The synthesized materials with a) 250 W,20 kHz, b) 500 W,20 kHz, and c) 1000 W, 20 kHz sonification.  
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temperature and stirred, and periodically, the MOF is separated from the 
aqueous environment and dried, and an XRD test is taken from it to 
check its crystallinity [18]. The stability for ZIF-8 in water at 100 

◦

C 
were reported to be seven days and in water at room temperature is one 
month. The measured stability period was low compared to the zeolites 
and UiO-66 which is equal to 1 month. Moreover, measured stability 
period was high compared to HKUST-1 which is equal to 1 day [39]. The 
properties of MOFs can be improved by combining MOFs with the ze-
olites, carbon, and polymeric materials [40–43]. Composite materials 
consisting of MOF were one of the suitable method to increase the 
adsorption loading [44–49]. For example, Ghiasi et al. [22] investigated 
the adsorption of diphenhydramin by MIL101-OH/Chitosan. The results 
showed that by adding polymer to MOF, stability and adsorption ca-
pacity increase. Xing et al. [15] investigated the adsorption of Doxycy-
cline and Naproxen by HKUST-1/ZnO/SA. The results showed that 
polymers and nanoparticles decrease the specific surface area but 
improve the selective adsorption and stability of the MOF. Sonocrys-
tallization is the crystallization induced by ultrasound, and was first 
reported by Richards and Loomis in 1927 [50]. Sonocrystallizatio-
n involves applying the ultrasound energy to control the nucleation, and 
crystal growth of a crystallization process [51]. When ultrasound is 
applied to a solution for crystallization, it can affect the properties of 
crystalline products significantly [52,53]. Extensive research was done 
for synthesis and the sonocrystallization of MOFs [54–56]. For example, 
Seoane et al. [57] investigated the synthesis of ZIF-8, ZIF-11 and ZIF-20 

by sonocrystallization method. Zheng et al. [58] investigated the 
sonocrystalization of ZIF-8/ZnO. They used ultrasonic waves to form 
MOF crystals. In terms of using the ultrasound waves for the formation 
of MOF crystals, the title of sonocrystallization was chosen. 

Due to the importance of accurate, healthy and cost-effective syn-
thesis of nanostructured adsorbents, an easy, green and energy-free 
method at room temperature called green synthesis of MOFs has been 
noticed in the last few decades. Important parameters for the synthesis 
of MOFs are the selection of inorganic metal cations, organic ligand 
molecules, used solvent and operating conditions including tempera-
ture, pressure and a suitable reactor [59]. 

The solutions that are important for green synthesis are [59]:  

• To use and produce materials, the synthesis method must be 
designed in such a way that it is non-toxic or low-toxic for human 
health and the environment. This means that solvents that break 
down into dangerous products during synthesis should preferably 
not be used. For example, the solvent dimethylformamide is not only 
a dangerous chemical substance, but it quickly turns into dimethyl-
amine upon hydrolysis. Water solvent and organic solvents produced 
from renewable feedstock such as ethanol can be used instead.  

• The energy required for synthesis should be economically viable. 
Synthetic methods should be carried out at ambient pressure and 
temperature. Reducing energy consumption can be achieved mainly 
by synthesis at temperatures as low as possible, using alternative 
energy methods such as ultrasound or mechanochemistry.  

• Chemical products should be designed in such a way that at the end 
of the operation, they become harmless products in the environment. 
Also, preferably, the substance used in a chemical process should be 
chosen so that chemical accidents, including explosions and fires, are 
minimized. This issue is especially important for large-scale syn-
thesis, which is ignored.  

• In general, it can be concluded that in any case, the amount of solvent 
used for the synthesis and activation or purification of MOF should 
be as low as possible, and also optimizing the reaction time is very 
important to reduce energy consumption. 

The best desired solvent for the synthesis of MOFs is water and 
ethanol due to its harmless properties and existing technologies for 
purification and recycling, and due to its low energy consumption and 
optimization of the reaction time of the sonochemical method [60]. The 
use and synthesis of MOFs has received attention in recent years. Most 
MOFs are synthesized by soluthermal (in which toxic solvents such as 
DMF, methanol are used) and hydrothermal (water solvent is used and 

Fig. 1. (continued). 

Fig. 2. The results of solvothermal synthesis of ZIF-8/Zeolite.  
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require high energy consumption) methods [61,62]. Sometimes, the 
characteristic and desired performance of MOF cannot be predicted 
during synthesis or before, so that there may be interference between 
different functional groups and the adsorbent structure is not made of 
desired ligands. It is also possible to destroy the ligands in the synthesis 
process. In this situation, using methods such as sonochemical synthesis 

or room temperature (in which solvents such as ethanol and water are 
used and consume less energy), an organic metal framework with 
desired properties can be achieved [63]. Considering the presence of 
pharmaceutical pollutants in drinking water and the side effects they 
have; this article examines the removal of the pharmaceutical pollutant 
azithromycin from contaminated water by a novel ZIF/zeolite composite 

Fig. 3. The XRD pattern of (a) purchased zeolite, (b) sonochemically synthesised ZIF-8, and (c) sonochemically synthesised ZIF-8/Zeolite.  

Fig. 4. FTIR spectrum of (a) Zeolite, (b) ZIF-8, and (c) ZIF-8/Zeolite and d) ZIF-8/Zeolite after adsorption.  
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adsorbent with high chemical stability in aqueous environments and 
high adsorption capacity. In this research, ZIF-8/zeolite composite was 
synthesized for the first time using the sonochemical green method. The 
effect of process factors, such as pH, pollutant concentration, adsorbent 
regeneration, kinetic models, adsorption isotherm and thermodynamic 
in the aqueous medium was studied. 

2. Materials & methods 

2.1. Materials and devices 

Zeolite (CAS Number: 1318-02-1), Zinc nitrate hexahydrate, 2-Meth-
ylimidazole, Triethylamine, Ethanol, Methanol, Hydrochloric acid, and 
Sodium hydroxide were provided from Sigma-Aldrich with at least 
sincerity of 99%. Azithromycin drug was purchased from Farabi Phar-
maceutical Co., Iran. Ultrasonic homogenizer of Banlin device, model 
HD-12207UW2200 made in Germany (frequency range: 20–500 kHz, 
time range: 0.01 to 99 min), and from Bio-Opic ultrasonic bath model 
USC2840-I Series made in China (Capacity: 0.6-45L, ultrasonic Freq: 40 
kHz and time setting with 1–30 min, built-in heating up to 80 ◦C) was 
used for synthesis. XRD analysis was conducted with Advance D8, made 
in Germany, using Cu K α at 1.540598◦ A with Nickle at 2θ scan rate of 
1◦ to 85◦. The angle measurement precision was 0.001. FT/IR 6300 
(JASCO, Japan) was used for FTIR analysis with a resolution of 4 cm− 1. 

(a) Zeolite

(b) ZIF-8

(c) ZIF-8/Zeolite
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Fig. 5. BET & BJH diagram of (a) Zeolite, (b) ZIF-8, and (c) ZIF-8/Zeolite.  

Table 1 
The textural properties of Zeolite, ZIF-8, and ZIF-8/Zeolite.  

parameter Zeolite ZIF-8 ZIF-8/Zeolite 

as (m2/g)  8.89  1123  887.5 
Vm (cm3(STP) g¡1)  1.83  310  203.91 
Vp (cm3g¡1)  2.04  0.21  0.33 
rp (nm)  10.63  10.63  1.22  
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Fig. 6. SEM pictures of (a) Zeolite, (b) ZIF-8, and (c) ZIF-8/Zeolite.  
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Furthermore, the MIRA III device from TESCAN Company (Czech Re-
public) was used for the SEM images. BELSORP MINI II instrument 
(Japan) was used for Brunauer-Emmett-Teller (BET) analysis. Azi-
thromycin adsorption measurement was conducted with a spectropho-
tometer with DR-5000 (JASCO, Japan). 

2.2. Preparation of ZIF-8/Zeolite composite 

The method presented by Li et al. [64] was used for the synthesis of 
ZIF-8. All parameters related to using the ultrasonic bath were chosen 
based on the study of Lee et al. [64]. The findings of this study’s com-
parison of various synthesis methods revealed that using ultrasonic 

waves reduces the size of the crystals, increasing the specific surface 
area. They studied the synthesis time and their results showed that the 
yield for 2 h and 4 h is close to each other, so 2 h was chosen for the 
synthesis. 

Zeolite was washed with ethanol to remove the pollutants from its 
surface, and put within a vacuum oven for 24 h at 150 ◦C to activate its 
sites. For the synthesis of ZIF-8/Zeolite composite, 1.6 g of 2-methylimi-
dazole were added to 50 ml of methanol in the round flask. 0.73 g of zinc 
nitrate hexahydrate was added to 50 ml of methanol. The solutions were 
stirred for 30 min and were added together. Then, they were stirred for 
10 min. The sonicator used with an adjustable power output (maximum 
500 W at 20 kHz) for 1 h. The solution was put within an ultrasonic bath 
at 60 ◦C for 1 h. The solution was centrifuged at 5 min at 10000 rpm. 
Hence, obtained gel was dried at 120 ◦C for 1 h in the oven. The white 
material was washed three times with ethanol for 48 h separated by 
centrifuge at 11000 rpm and 10 min. Finally, the powder was dried in a 
vacuum oven for 12 h at 80 ◦C. 

In this study, screening tests were conducted for the ultrasonic power 
of the homogenizer. First, the optimal conditions of Lee et al. [64], equal 
to 1 h, 500 W power and 20 kHz frequency, were performed. Then, two 
syntheses were performed under the same time conditions with the 
power of 1000 and 250 W and the frequency of 20 kHz. In these con-
ditions, more power caused the degradation of ligands. Also, the amount 
of synthesized material in the condition of 250 W is very low and the 
efficiency of this method is 30%. Meanwhile, the synthesis efficiency for 
the conditions of 500 W and 20 kHz frequency is equal to 87%. Also, the 
XRD pattern was taken from all the samples, the results showed that we 
have the highest crystallinity in the optimum mode of 500 W and 25 
kHz. Fig. 1 shows the synthesized materials in each of the conditions. 

According to the conducted research, the synthesis method is only 
effective on the size of nanoparticles and has no effect on the 
morphology of the particles, and room temperature and solvothermal 
methods were also used for composite synthesis, in the solvothermal 
method due to the high temperature and pressure This method is used, 
the material loses its properties and burns (Fig. 2). 

Also, the room temperature method was also investigated, which had 

Fig. 7. The adsorption capacity of azithromycin in terms of adsorbent dosage (C0 = 200 ppm, v = 25 ml, time = 120 min, T = 25 ◦C).  

Fig. 8. The effect of pH on the azithromycin adsorption on Zeolite, ZIF-8, and 
ZIF-8/Zeolite (c0 = 200 ppm, m = 0.025 g, v = 25 ml, time = 120 min, T 
= 25 ◦C). 
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a low efficiency and the specific surface area of the ZIF-8/Zeolite in this 
method was lower (750 m2/gr) than the ultrasonic method. A lower 
specific surface area reduces the adsorption capacity, so the ultrasonic 
method was chosen. 

2.3. Experimental method 

For the adsorption isotherm experiment, 25 ml of a drug mixture 
comprising 50, 150, and 200 mg/l were combined with 0.025 g of 
adsorbent. Then, the solution and adsorbent were shaken at 180 rpm for 
2 hr. For the kinetic experiment, a drug solution with a C0 of 200 mg/l 
was generated, and 0.025 g of each adsorbent were added to 25 ml of the 
drug solution at different periods (5 to 120 min). To determine appro-
priate pH for the adsorption of azithromycin, 0.025 g of adsorbent was 

included in 25 ml of drug solution with C0 = 200 mg/l, at pH 5–9. For 
the reusability experiment, 50 mg of adsorbent placed in 35 ml of azi-
thromycin solution with C0 = 200 mg/l and pH = 8 at 25 ◦C for 2 h until 
the adsorption reached the equilibrium. Afterward, the adsorbent was 
separated using Sinter Glass 5G which was placed in Water/Ethanol 
(20:80) solution. All tests involving adsorption were conducted three 
times, and the results were recorded. There was an error bar in each 
figure that displayed the average error. The adsorbent was recycled 10 
times, and the adsorption procedure was performed each time. After 
achieving equilibrium at each step, the drug solution was delivered to 
the cell using a micropipette, and absorbance was measured using a 
UV–Vis spectrophotometer. The adsorption loading is denoted by q, 
calculated from Eq. (1). 

q =
(C0 − Ce) × V

m
(1) 

In Eq. (1), q is the adsorption loading (mg/g), C0 is the primary 
concentration (mg/l), Ce is the concentration of drug after the adsorp-
tion experiment (mg/l), V is the volume (l), and m is the adsorbent used 
in the experiment (g). 

3. Results and discussion 

3.1. Characterization 

3.1.1. XRD analysis 
Fig. 3(a) belonged to the XRD pattern for the purchased zeolite and 

showed a peek at 2θ of 22◦, 24◦, 27◦, 30◦, and 35◦, which was 
compatible with the card numbers 39-0222 of Zeoltie A from the ICDD 
(International Centre for Diffraction Data) [65]. The crystal size ob-
tained from the Scherrer equation was 33 nm. Fig. 3(b) shows the XRD 
pattern for the sonochemically synthesised ZIF-8, and observed peaks at 
2θ of 7◦, 12.5◦, and 17◦. Where as ZIF-8 was synthesized using Ref. [64]. 
The XRD results for the ZIF-8 were in accordance with the reference 
[64]. Moreover, based on Scherrer equation, the crystal size was 9.3 nm. 
Fig. 3 (c) shows the XRD pattern for the sonochemically synthesised ZIF- 

Fig. 9. The mechanism of adsorption of Azithromycin on ZIF-8/Zeolite.  

Table 2 
Parameters of kinetics models.  

Model Parameter Zeolite ZIF-8 ZIF-8/ 
Zeolite 

pseudo-first- 
order 

qe (mg.g− 1)  22.78  229.2  124.2  

K1 (min− 1)  0.05  0.18  0.15  
R2  0.97  0.97  0.97 

pseudo-second- 
order 

qe (mg.g− 1)  26.19  231.2  126.5  

K2/10− 2 (g/(mg. 
min))  

0.26  0.72  0.62  

R2  0.98  0.98  0.98  
R2adjust  0.98  0.99  0.99  
Residual Sum of 
Squares  

7.66731  2.00461  1.86837  

Reduced Chi-Sqr  1.91683  0.50115  0.46709 
Intraparticle 

diffusion 
C (mg/g)  3.17  62.98  32.75  

kipd (mg.min − 0.5 

g− 1)  
2.11  19.57  10.75  

R2  0.86  0.67  0.70  
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8/Zeolite. The peaks observed at 2θ of 7.5◦, 13◦, and 18.3◦ belonged to 
ZIF-8, and the peaks observed at 2θ of 24.2◦, 27.3◦, 30.15◦, and 34.4◦

belonged to zeolite. Regarding the coverage of zeolite with ZIF-8, the 
intensity of peaks of zeolite decreased. The presence of peaks of both 
materials in the XRD analysis and their sharp intensity showed that 
composite materials were synthesized and that their crystallinity was 
high. 

3.1.2. FTIR analysis 
FTIR analysis was accomplished over 400–4000 cm− 1, and the result 

is shown in Fig. 4. In Fig. 4 (a), FTIR for zeolite was observed. At 567 
cm− 1, the vibration band of O-Si-O, at 1013.8 cm− 1 vibration of Si-O-Si, 

and 1668 cm− 1 and 3439 cm− 1 vibration band of O-H were perceived. 
Fig. 4(b) is FTIR for synthesized ZIF-8. The peaks at 650 cm− 1 belonged 
to the vibration band of C-H, and the band of 1500 cm− 1 belonged to the 
vibration band of C = N in the imidazole ring, respectively. The 
stretching band of Zn-N was represented by the bands at 440 cm− 1, 
which supported the band’s development between a metal and an 
organic ligand. FTIR for composite is shown in Fig. 4(c). In these spectra, 
all bands of zeolite and ZIF-8 were observed, which confirmed the 
synthesis of composite. Fig. 4(d) shows the FTIR of composite sample 
after adsorption. Based on Fig. 4, after adsorption, hydrogen bonds were 
established between the adsorber and the pollutant. The presence of C-H 
and C = N bands was related to imidazole. 

Fig. 10. The pseudo-second-order kinetic fitting for azithromycin adsorption on the Zeolite, ZIF-8, ZIF-8/Zeolite (c0 = 200 ppm, m = 0.025 g, v = 25 ml, pH = 8, T 
= 25 ◦C). 

Table 3 
Adsorption isotherm parameters.  

Model Parameter Zeolite ZIF-8 ZIF-8/ 
Zeolite 

Langmuir qmax (mg.g− 1)  22.37  235.3  131  
KL (l.mg− 1)  0.305  0.625  0.3212  
R2  0.99  0.99  0.99  
R2adjust  0.98  0.98  0.98  
Residual Sum of 
Squares  

3.50441  314.12864  749.06213  

Reduced Chi-Sqr  0.8761  157.06432  374.53107 
Freundlich KF (mg1− nln.g− 1)  10.81  102.3  45.3  

n  6.23  5.56  4.352  
R2  0.94  0.89  0.90 

Temkin BT (Kj.mol− 1)  3.063  30.65  20.08  
AT (L.mg− 1)  16.36  23.56  6.863  
R2  0.81  0.89  0.92 

Redlich- 
Peterson 

KRP (l.mg− 1)  5.28  122.3  33.62  

αRP (L.mg
− 1
)  0.17  0.43  0.18  

βRp  1.075  1.043  1.073  
R2  0.99  0.99  0.99 

Hill qH (mg.g− 1)  21.46  234.1  128.5  
KH  4.85  1.621  3.14  
nH  1.36  1.04  1.137  
R2  0.99  0.99  0.99  

Table 4 
The comparison of the results of this study with the results of researchers.  

Drug Adsorbent Adsorption 
capacity (mg/ 
g) 

Time Isotherm Ref. 

Azithromycin Waste- 
Product- 
Derived 
Graphene 
Oxide 

55.5 15 
min 

Freundlich [89] 

Activated 
carbon 

41.84 120 
min 

Langmuir [90] 

Magnetic 
activated 
carbon 

42.38 

Saponin- 
modified nano 
diatomite 

91.7 60 
min 

Langmuir [77] 

saponin-raw 
nano 
diatomite 

68 

ZIF-8 235.37 60 
min 

Langmuir This 
study Zeolite 22.3 

ZIF-8/Zeolite 131  
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3.1.3. BET analysis 
Using the BET, surface area was calculated. Based on nitrogen gas 

adsorbed at relative pressures between 0.1 and 1, surface area was 
calculated. Fig. 5 displays adsorption and desorption isotherms as well 
as a BJH diagram. Due to the adsorption in mesopores at higher pres-
sures, nitrogen adsorption in micropores took place at low partial 
pressures. Capillary condensation in mesopores led to the hysteresis. 
Pore size distribution was determined by the BJH method. The highest 
pore frequency for zeolite, ZIF-8, and composite had radius sizes of 
10.63 and 1.21 nm, which were in the range of mesopores. Based on 
IUPAC [66], adsorption and desorption isotherms for zeolite, ZIF-8, and 
composite were similar to pseudotype II, type IV, and type 4 hysteresis, 
respectively. This difference was in terms of different pore sizes in 
composite, and the pores had a cylindrical morphology. The surface area 
for zeolite, ZIF-8, and composite is 8.89, 1123, and 887 m2/g. Table 1 
shows the surface specification of adsorbent [67]. 

3.1.4. SEM analysis 
Fig. 6 shows the results of SEM analysis at 2 µm and 500 nm. Zeolite 

was multi-dimensional. Fig. 6(b) shows ZIF-8, which indicated that this 
material was multifaceted and synthesized correctly. Fig. 6(c) shows the 
ZIF-8/Zeolite composite. ZIF-8 coated the zeolite surface in terms of its 
nanometer size. 

Regarding the input of ICP device should be a clear liquid or solution, 
therefore, to examine solid samples, it is necessary to dissolve the solid 
material in a suitable solvent, which is called the digestion process [68]. 
MOFs, such as ZIF-8 are dispersed and do not dissolve in aqueous and 
organic solvents, such as methanol and ethanol and dissolve only in 
acidic environments with a pH of less than 3, and zeolites only in 
alkaline environments. It dissolves with a pH higher than 10 [69–71]. 
Consequently, it is not possible to get an ICP test for the composite in the 
investigated pH range. 

Fig. 11. Langmuir isotherm fitting diagram (Time = 120 min, m = 0.025 g, v = 25 ml, pH = 8, T = 25 ◦C).  

Table 5 
Thermodynamic parameters of the adsorption process.  

Parameter 

Adsorbents ΔS (J/mol/K) ΔH (J/mol) ΔG (KJ/mol) 

Temperature (K) 

298 333 373 

Zeolite  17.37  1333.98  − 3.85  − 4.42  − 5.15 
ZIF-8  2.33  559.40  − 0.13  − 0.20  − 0.31 
ZIF-8/Zeolite  5.48  754.85  − 0.87  − 1.08  − 1.20  

Fig. 12. Van’t Hoff curve to calculate enthalpy and entropy of adsorption.  
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3.2. Adsorption tests 

In the field of adsorption, researchers have investigated the effect of 
contact time (kinetic), temperature (thermodynamics) and initial con-
centration (isotherm) [72,73]. In adsorption, temperature, concentra-
tion, contact time and adsorbent dose and pH affect the adsorption 
capacity. In this research, all parameters affecting the adsorption pro-
cess have been investigated. Also, the stability and recovery of adsor-
bents have been investigated. 

3.2.1. Effect of dosage 
To check the adsorbent dose 5, 25, 50 and 75 mg of adsorbent are 

mixed in 25 ml of drug solution and then the amount of adsorption was 

measured. Fig. 7 shows the adsorption capacity of azithromaycine due to 
the adsorbent dosage. The researchers showed that by increasing the 
adsorbent dose, the adsorbent particles stick together and aggregation 
occurs. Small amount of adsorbent becomes saturated in the face of a 
large amount of pollutant [74]. During the experiments, the solution 
was stirred by an incubator shaker. If the amount of adsorbent is high, 
mixing the solution will cause the particles to gather in the middle of the 
container and stick together. On the other hand, if the solution is mixed 
with a stirrer and a magnet, the presence of a magnet causes the drug to 
not easily penetrate into the pores of the MOF and is known as a dis-
turbing factor. The opinion of the respected referee for the low amount 
of adsorbent is completely correct. Due to the different specific levels, 
the saturation level values of the adsorbents are also different. But the 
drug concentration is so high that the difference is only in the time of 
saturation. The amount of 5 mg of each of the adsorbents is saturated in 
the first moments and the so-called adsorbent is poisoned. The satura-
tion time for the ZIF-8, which has the highest specific surface, is 5 min. 
As a result, the amount of 25 mg was chosen. 

3.2.2. Effect of pH 
When it comes to adsorption and electrostatic interaction, pH is an 

important parameter. The pKa of azithromycin was 8.5, and the iso-
electric point of zeolite, ZIF-8, and composite were 7, 8.5, and 8, 
respectively [75]. The effect of pH on adsorption loading is shown in 
Fig. 8. Based on the surface charge of contaminant, ZIF-8, and com-
posite, since at the isoelectric point, the pKa of the drug was 8.6, the 
adsorbent and contaminant had similar surface charges. At pH 8, both 
materials were neutral, and thus maximum adsorption occurred. By 
zeolite, the surface charge of the contaminant and the adsorbent was 
identical and positive at pH levels lower than 7, which decreased the 
adsorption capacity. However, the highest adsorption occurred from pH 
7 to 8.5 in terms of the opposite charges of adsorbent and contaminant. 
For pH values higher than 8.5, due to similar surface charges, adsorption 
capacity decreased. PH 8 was selected as the optimum pH value 
[76–79]. 

The mechanism by which azithromycin is adsorbed on ZIF-8/Zeolite 
is shown in Fig. 9. The mechanism of electrostatic interaction has an 

Fig. 13. The changes in adsorption capacity based on the temperature.  

Fig. 14. The number of cycles of azithromycin recovery on the zeolite, ZIF-8, 
ZIF-8/Zeolite. 
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impact on the adsorption process when taking into account the effect of 
pH on the adsorption capacity. Moreover, based on the structure of drug 
and adsorbent, the presence of functional groups OH in the structure of 
zeolite, amino groups in the structure of ZIF-8, as well as the presence of 
acidic functional groups (–CH3, COOH) in the structure of drug, the acid- 
base interaction mechanism and hydrogen bonding were involved in the 
adsorption process [29,31,80,81]. 

3.2.3. Kinetic of adsorption 
The kinetic tests were fulfilled to examine the effect of contact time 

on drug take-up and determine the equilibrium time. The data has been 
fitted with the relevant equations using the curve fitting tab of MATLAB 
version 2018. The information was adapted with pseudo-first-order, 
pseudo-second-order, and intraparticle diffusion models, and obscure 

quantities of kinetic models were obtained. Under Table 2 and R2, 
pseudo-second-order kinetic was an acceptable model for drug adsorp-
tion. This model assumed that the reaction was a rate-limiting reaction. 
According to a study of intraparticle diffusion, the constant penetration 
speed of intraparticles ranged from 2 to 19. The constant C indicated the 
boundary layer’s thickness, which represented the outside mass transfer. 
According to the study, mass transfer on the outer surface controls the 
first stage of adsorption. On the contrary, the sharp increment in 
adsorption within the method’s early stages was considered a quick 
stage for starting the mass transfer [24]. 

Based on Fig. 10, in the initial stages, the adsorption speed was 
higher in terms of higher available sites on the adsorbent and higher C0 
of pollutant (the slope of graph was sharp). By approaching the equi-
librium, activation sites were occupied. Thus, the speed of adsorption 

Fig. 15. The XRD pattern of the a) zeolite, b) ZIF-8, c) ZIF-8/Zeolite after 10 cycle.  
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decreased (the slope of graph slowed down and approached zero). The 
adsorption graph remained constant as long as the adsorbent could not 
adsorb more pollutants. 

3.2.4. Investigation of the adsorption isotherm 
Fixed values of adsorption isotherm were determined to be specific 

to surface properties, and its fondness for adsorption prepare [82]. The 
isotherm models were studied, and the results are shown in Table 3. The 
qm indicated the adsorption loading. The regression coefficient (R2) for 
ZIF-8, Zeolite, and ZIF-8/Zeolite in Langmuir model was 0.99. Conse-
quently, the laboratory data were consistent with fitting data. KL in 
Langmuir model was used to precisely determine the particle attraction 
power, and the amount changed from 0.32 to 0.62. The maximum 
adsorption loading for azithromycin was 235.3 mg/g. R2 for zeolite, ZIF- 
8, and ZIF-8/Zeolite were 0.89, 0.9, and 0.94, respectively, which were 
lower than Langmuir isotherm. This result confirmed the unsuitability of 
Freundlich isotherm for the adsorption of drug. KF was determined to be 
10.8, 102.3, and 45.3, respectively. The Freundlich isotherm parameter 
n indicated the suitability of adsorption. Regarding the information in 
Table 4, if n is from 0 to 10, the adsorption is favorable [83]. According 
to the results obtained for the adsorbent, the Langmuir model and the 
Redlich-Paterson model had the highest R2 compared to the other 
isotherm models. The adsorption of azithromycin on studied adsorbents 
was a monolayer. The adsorbent texture was homogenous and adsorp-
tion was physical and chemical. Regarding the proximity of β in the 
Redlich-Paterson model to the value of 1, Langmuir model had higher 
compatibility with experimental data. According to the specific surface 
area of the adsorbents, ZIF-8 is the highest and zeolite is the lowest, the 
highest and lowest adsorption capacity is related to ZIF-8 and zeolite, 
respectively. Fig. 11 shows the fitting of Langmuir model [84,85]. Ac-
cording to the results of the investigation of the isotherms, the adsorp-
tion capacity also increased as the initial concentration increased. See 

Table 5.. 
Considering the importance of accurate, healthy, and cost-effective 

synthesis of nanostructured adsorbents, an easy, green, and energy- 
free method at room temperature called green synthesis of MOFs has 
been of interest in the last few decades [86]. In general, it can be 
concluded that the amount of solvent used for the synthesis and acti-
vation or purification of MOF should be as low as possible, and also 
optimizing the reaction time is very important to reduce energy con-
sumption [87]. The best desired solvent for the synthesis of MOFs is 
water and ethanol in terms of its harmless properties and present tech-
nologies for purification and recycling, and due to its low energy con-
sumption, and the optimization of the reaction time of sonochemical 
method [59,88]. It was mentioned that this composite is better syn-
thesised than other adsorbents. In addition, the results showed that the 
composite synthesized was suitable for the removal of azithromycin, 
since azithromycin had a high adsorption capacity. Table 4 shows 
comparing the results of this study with the results of researchers. 

3.3. Thermodynamic of adsorption 

Enthalpy and entropy may be calculated from the inclination and 
breadth of the Van’t Hoff curve by researching how temperature affects 
adsorption capacity (Fig. 12) [91]. 

Table 4 lists the outcomes of the adsorption thermodynamics drawn 
from the Van’t Hoff diagram. Table 4 shows that ΔG◦ was negative, 
demonstrating the spontaneity of the adsorption process. Throughout 
the procedure, irregularities in terms of the positive values of ΔS◦

increased. Based on the value of ΔH◦ , which was positive, the adsorption 
process by all adsorbents was endothermic. Moreover, based on the 
references, and values of ΔH◦ , which were elder than − 20 kJ, it can be 
concluded that the adsorption band was physical [92,93]. 

Fig. 13 shows the changes in adsorption capacity based on the 

Fig. 15. (continued). 
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temperature. Adsorption increased with increase in temperature in 
physisorption. But, this increase in temperature does not always increase 
the adsorption capacity [94]. According to the adsorption theory, 
adsorption decreased with an increase in temperature and molecules 
adsorbed earlier on a surface tend to desorb from the surface at elevated 
[95]. Consequently, the temperature should be optimized. According to 
Fig. 13, by increasing the temperature, the adsorption capacity 
increased from 25 to 60 ◦C, but this increase is insignificant, and in terms 
of saving energy, the experiments were carried out at 25 ◦C. 

3.4. Adsorbent regeneration 

The recovery of the adsorbent was essential for reusing the adsor-
bent. As shown in Fig. 14, Zeolite, ZIF-8, and composite can be used in 
10, 5, and 10 cycles in aqueous solutions. A lesser amount of composite 
was needed for higher removal of pollutants from aqueous solutions 
compared to zeolite. Based on Fig. 14, the removal efficiency of the 
composite was high enough during 10 cycles of usage. It indicated the 
stability of composite compared to ZIF-8. The adsorption capacity of 
composite was lower than ZIF-8, but composite was used in 10 recovery 
cycles and ZIF was used in 3 recovery cycles with a removal efficiency of 
85%. Consequently, the composite was stable, and for a small amount of 
adsorbent, a larger amount of pollutants can be removed which was 
economical. Fig. 15 showes the XRD pattern of the zeolite, ZIF-8, ZIF-8/ 
Zeolite after 10 cycle. According to Fig. 15, the synthesized composite 
was stable after 10 cycles and the XRD pattern did not change. 

4. Conclusion 

According to this study, the adsorption capacity on zeolite, ZIF-8, 
and composite was 22.37, 235.3, and 131 mg/g, and the data fol-
lowed the Langmuir isotherm, which was a monolayer adsorption. The 
kinetic studies show that the drug adsorption obeyed pseudo-second- 
order kinetics, and the adsorbent reached equilibrium within 60 min, 
and at pH = 8. pH had a profound effect on the adsorption result due to 
the electrostatic interactions. The adsorption process was spontaneous, 
endothermic, which was associated with increased entropy. The recov-
ery of adsorbent showed that the composite can be used in 10 cycles 
with a removal efficiency of 85%. The composite was stable in an 
aqueous solution, determined by the number of cycles used in the 
adsorption and reuse compared to ZIF-8. 
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